Time Series Forecasting Real World Data: Auto Regression Using a Neural Network Forecaster with Weighted Windows

By Brad Morantz Ph.D.

Copyright 2004, 2008

Time Series Forecasting

- Used when don't have causal variables to build model
 - Don't know all of the variables
 - Can't measure all of the variables
 - Do not have metrics to describe variables
 - Do not know the model
- Assume whatever has been happening will continue (from near past to near future)
- Effect of causal variables reflected in criterion/dependent lagged values
- Use lagged values to predict future

Problems

- Nonlinearity
 - The real world is not linear
 - Usually not even Gaussian
- Changing Causal Factors
 - Time of occurrence is important
 - Underlying factors change
 - Slowly
 - Quickly
 - Combination of both

Changing Causal Factors

- When there is a system shock
 - Example: Sept 11 effect on the stock market
- When there is a slow change over time in causal factors
 - Example: the price of computer memory
 - New processes and methods
 - New standards
 - Economies of scale
 - New or different needs
 - Competition

Tracker

Passive object

- Behaves according to projectile theory
- Other items & gravity act upon it
- Active object
 - Fins move, motors turn on
 - Engine causes maneuver
 - Sudden changes in direction
 - Sudden changes in acceleration

Remediation

- Transform Data
 - Square
 - Square root
 - Trig function
 - Exponential
 - Log
 - etc.

Must convert back in order to interpret

Pros and Cons of Transforms

Pros

- More linear
- Better fit
- Less error

Cons

- Need to convert back before can assess error or fit or apply results
- Does not always work
- Requires Time
- Requires operator skill

Current Methods

- OLS autoregression
 - Best fit linear model incorporating all data
- Random Walk
 - Naïve forecast expects no changes
- ARIMA/Box-Jenkins
 - Requires model
 - Incorporates all data
- Moving average

Methods Cont'd

- Exponential smoothing
- Specialized non-linear
 - ARCH, GARCH, Bilinear, TAR, STAR
- Kalman Filter, extended Kalman
- Batch Least Squares
- Artificial neural network
- Many more

Neural Network

- Can fit non-linear models
- Not affected by multi-colinearity
- Can solve multiple step horizon
- Learns input output relationship
- More immune to noise
- The general approximator
- Data driven few a priori rules
- Successfully used in forecasting

Ways to Cope with Changes

- Short forecast horizons
 - use only more recent data
- Weighted regression
 - NIST states effective for heteroscedasticity
- Moving versus Rolling Windows
 - Control number of observations used for training/building model

Training Data

- Used to build model
- Must clean data before use
 - Garbage in = garbage out
- Methods to use data
 - Rolling Window
 - Moving Window
 - Weighted Window (WW)
- Must maintain positive degrees of freedom

Rolling vs. Moving Window

- Rolling Window
 - Rolls forward including all data behind
 - Constant starting point with ever increasing size
- Moving Window
 - Deletes the oldest as it adds the newest
 - Constant size with ever increasing starting point

Rolling vs. Moving Window

Advantages

- Rolling Window
 - Learns from all
 - Doesn't forget
 - Everything is equally important
 - Can reduce variance and confidence interval

- Moving Window
 - Not affected by causal changes
 - Not as affected by system shocks

Disadvantages

- Rolling Window
 - Might include too much information
 - May include rule that now has smaller affect
 - May include rule that has no affect

- Moving Window
 - May not include enough data
 - May have lost valuable information
 - Might have deleted important rule

Weighted Window (WW)

- Currently uses linear ramp
 Until improvement developed
- Deletes information that is too old
- The newest information is the most important (recency rule)
- Older information is retained but is not as important as new data
- Superset of rolling & moving windows

Linear Ramp

Weighted Window

Selecting Window Size

- Trial and Error
 - Try many
 - Select the one with least error
- A priori knowledge
- Heuristics or formulae
- Application of Chaos theory

Macro View

- Neural Network Forecaster with Weighted window (WW)
- Learns from history
 - Newest information is most important
 - Older knowledge is not lost, it is just not as important as the most recent
 - Can fit non-linear applications

Results

Data set	ANN*	<u>WW*</u>	
<u>Change</u>			
CD Rates	11.4%	5.36%	52.98%
Eurodollar	4.98%	4.13%	17.17%
Fed Funds	4.41%	2.49%	43.39%
N Hse Sals	20.12%	11.19% 44.3	8%
FR Franc	3.26%	2.79%	14.48%
*Mean Absolu moving win	te Percentag dow)	ge Error (MAPE)(bes	st of rolling o
Change is red	uction in MA	PE	

J

Potential Applications

- Time series with changing causal variables
- Time series that has system shocks
- Examples:
 - Projectile with some active control
 - Stock market
 - Sales of popcorn

Future

- Optimizing Window size
 - Application of Chaos Theory [Frank et al]
 - Selecting similar data [Shimodiara]
 - Use of genetic algorithm (GA)
- Optimizing weighting pattern
 - A priori knowledge
 - Heuristics & formulae

Future Cont'd

- Weighted window with neural network classifier
- Optimizing Architecture of ANN
 - Genetic Algorithm
 - Embedding theorem [Frank et al]
 - A Priori knowledge
 - Combination of above

Home Project

- Just built quad core machine
- Projectile simulation
 - Active
 - Passive
- Compare accuracy, precision, computation time
- Use Kalman vs Neural
- Analyze with multi-factor ANOVA

Appendix Statistical Analysis Methods

Two factor ANOVA

- Time of forecast
- Treatment (type of window)
- MAPE derived from 31 forecasts
- One unit (month) horizon
- ANOVA performed
- Tukey's HST performed
- Longer horizons also forecast with comparable results

Results of Two Factor ANOVA

Statistically Significant

- CD rates
- Federal Funds Rate
- New House Sales
- Not significant excessive variance within treatment
 - Eurodollar
 - French Franc

More Statistical Analysis

- Three Factor ANOVA
 - Treatment (type of window)
 - Time of forecast
 - Data set
- Results
 - All treatments were statistically significant

Final Note

- This was part of a more exhaustive study.
- Academic references are available upon request
- Yes, more research is continuing in this area

- www.machine-cognition.com
- IEEE computational intelligence society
 TIMS/ORSA
- Times Series Forecasting Bauerman & Occonel

My Contact Information

- Brad Morantz PhD
- www.machine-cognition.com
- bradscientist@ieee.org
- www.cognitive-decisions.com

Questions?