Data Mining

Brad Morantz PhD

bradscientist@machine-cognition.com

Copyright Brad Morantz 2009

What is a Mountain?

A big pile of dirt!

Data?

- Some people would say that data on them is . . .
- Dirt
- A big pile of data is a . . .
- Mountain of data or a data warehouse

Mountain of data

Notice in Last Example . .

- Different people
- Different facts
- Unconnected?
 - Maybe:
 - Bob bought the Ford from Chen (for \$10?)
 - Mary bought the Rice Krisp from Chen
 - Maybe Bob delivers the Rice Krisp in his Ford
 - Maybe something else
 - Maybe nothing

Data Mining

- Is the nontrivial extraction of implicit previously unknown and potentially useful information and data. (James Buckley)
- Machine Learning employs search heuristics to uncover interesting and systematic relationships in data. (Dhar & Stein)

Data Mining

- Going into a data file and looking for patterns and relationships
- Use of historical data to find patterns and improve future decisions
- Also called KDD
 - Knowledge discovery from databases

Uses

- Merchandising
 - Association rules
 - Customer profiling
- Problem solving & risk profiling
 - Medical
 - Financial
- Pattern Recognition
 - IRS
 - NSA
- Many more

We want information that is:

- Original
- Nontrivial
- Fundamental
- Simple
- Useful
- Currently needs to be numerical or categorical

Theoretical Definition of Data Mining

- Go into data
- No preconceived ideas
- See what is found

Analogy

- Somebody gives you a box of stuff
- You have no idea what is in it
- You open it up
- You look through the contents
- You make note of all that you have found
- You may sort the stuff into piles based upon some similarities

Association Rule Example

- Check out at store Each check out is a record Called a "basket" Look at what was purchased Look for relationships or associated
 - items
 - milk and cereal, beer and pizza

Grocery Example

Invoice	<u>Milk</u>	<u>Cereal</u>	<u>Pizza</u>	<u>Beer</u>	<u>Eggs</u>
1	Х	Х	Х	Х	
2			Х	Х	Х
3	X	Х			Х
4	Х	Х			Х
5			Х	Х	
6	Х				Х

Milk AND Cereal

Support

- Percent of baskets where rule is true
- P(milk AND cereal) = 3/6 = 0.500

Confidence

- Percent of baskets that have cereal given milk is in the basket
- $P(cereal|milk) = \frac{3}{4} = 0.75$

Benefits to Retailer

Store layout & increased sales

- Puts items that sell together close to each other
- Increase impulse purchases
- Help forecast inventory levels
- Learn customer preferences
- Increase profitability

Common Meaning of Data Mining

- Go into data
- Look for patterns
- Look for answers
- Look for similarities
- Look for rules
- Look for relationships

More Analogy

- Someone gives you the box full of stuff
- You are looking for hit singles by Mick Jagger (very specific)
- Along the way, you might discover that they are round, plastic, about 7" diameter, with a 1" hole in the middle
- You might discover that they are on London label
- You might discard all other things in the box

Example

High risk pregnancy

- Tons of data
- What are common factors?
- Myocardial Infarction (MCI)
 - Tons of data
 - What factors common in non-occurrence?
- Loan application
- Many other situations

Simple Use of Common Factors

- Nurse/banker/etc can ask a few questions
 - The key factors
 - Identified by data mining
- Now has indication of risk or outcome

Interesting Finding

Data mining stolen credit cards

- Common pattern
- Pay at pump authorization
 - To determine if card is good
- Fast indication of stolen card

What is in the Mountain of data?

- Better yet, ask
- What is NOT in the mountain of data?

Original

US NavyBoilers on boats exploding

Think about a trip to the store

They scan your purchases

- You give them credit card or check
 - They have your
 - name
 - Address
 - Telephone number
 - Maybe drivers license
 - Maybe SSN
 - List of items that you bought, including size

Grocery Store

Single male

- Pizza
- Beer
- Potato chips

- Mother with kids
 - Milk
 - Bread
 - Eggs
 - Cereal
 - If diapers, then infants

Think About . .

- All of the "baskets" about you out there
 - Medical Information Bureau (MIB)
 - Charge Cards
 - Bank information
 - Public records
 - Store purchases
 - Travel records
 - Much more

The combination of all this creates a pattern that describes you exactly

Applications

- Marketing
 - Target marketing
 - Store layout
 - Better understanding
- Medical
- Criminal
- Financial
- Science

Methods

- Rule Induction
- Similarity Engine
- OLS & logistic regression
- Data visualization
- Bayesian Classification & networks
- Clustering
- Specialized programs
 - Clementine
 - Enterprise Miner

Plot

Plot data and put in breaks to split it

Months on the job

Clustering

This can be in N-space or hyperspace Each dimension is a variable

Distance can be mahalanobus, Euclidian, or other metric

Each Cluster

Brad Morantz

Recursive Partitioning Algorithms

Recursively make choice at node purer

- Adding another node = another variable
- Add until desired accuracy is met
- CART
 - Classification And Regression Trees
 - Reducing variance at node makes cluster tighter
- ID3/C4.5
 - Bayes Classification
 - Reduce entropy/disorganization

Statistical Processes

- Plot it and look at plot
- Step wise regression
- Significant variables
 - T value
 - Eigenvalue
- Pearson correlation coefficient
- Cluster Analysis

Bayes Classification

Conditional Probability • $P(A|B) = P(A \cap B) / P(B)$ Independence If P(A|B) = P(A), then A independent B If not independent, then B contributes Compare P(A|B) to P(A|C) to Can rank variables to see how much knowledge each adds

Required steps

- Build & maintain a database
- Data formatting
- Data cleansing & anomaly detection
- Data visualization
- Currently need human expert to evaluate

Data Preparation

- 75% of effort and time
- Can mean difference between success and failure
- Can greatly affect accuracy

Data Preparation Example

- Mathematical relationships
 - Weight of animal in shell > animal only
 - Ratios
 - More than possible quantity in container
- Impossible answers
- Out of range answers
- Data entry errors
- Etc

Why now?

- Rapidly decreasing cost of data storage
- Increased ease of collecting data
 - Networks
 - Internet
 - Intranet
 - Store scanners
 - Computerized lifestyle
 - Heavy use of credit/debit cards
 - Store customer "value" cards
- More & cheaper computational power

Future

- Incorporation of background & associated knowledge
- More exacting data sources
- Hybrid systems
- Mixed media use

References

- Leo Breiman
- Tom M Mitchell & Bruce Buchanan
- Toshinori Munakata
- Quinlan
- Clark & Niblett
- www.kdnuggets.com
- www.machine-cognition.com