Automated Cluster Description in N-Space

Or Don't Ask What You Can Tell Your Data but rather What Can Your Data Tell You

by Dr Brad Morantz

Copyright Brad Morantz 2009

Overview

- •Why do I care?
- Definition of cluster analysis
- Types of cluster analysis
- •What does it tell us?
- •The steps
- •How it is done
- Interpretation
- Applications
- •Examples

Why do I Care?

- It tells us what is going on in the data
- It shows which variables are important
- We can see what things "hang around" together
- We can see what ranges of data go with which ranges of other data
- Exploratory data analysis
- This is data driven
- No bias from the expert
- Not restricted to current theories
- Can provide good directions for classifier

Definition

Wikipedia

- the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often proximity according to some defined distance measure
- Maechler, Struyf, & Hubert
 - Cluster analysis divides a data sets into groups of observations that are similar to each other.

• Internet

- Identify characteristics that maximally discriminate between groups
- Čluster analysis seeks to identify homogeneous subgroups of cases in a population; to identify a set of groups which both minimize within-group variation and maximize between-group variation.

Cluster Analysis

- Putting samples into groups so that samples within group are similar and the groups are dissimilar from each other
- Grouped around shared values
- Data consists of distinct subsets
 - Cluster to discover them
- Sometimes called "class discovery"
 - Classes not yet defined
 - Discovered in clustering process
 - Each group/class is a cluster
- No Preconceptions! (Key point!)

Types of Cluster Analysis

- Hierarchical
 - Builds a tree or dendogram
 - Aglomerative
 - N clusters of one member each
 - builds from the bottom up
 - Divisive
 - Starts with one big one
 - Then splits it down
- Partitioning
 - Splits data into groups that are similar
 - Number of clusters often specified in advance

Methods

- Hierarchical
 - Agglomerative
 - Nearest Neighbor or minimum method
 - Join the two that have members that are the closest
 - Furthest neighbor or maximum method
 - Join the two that furthest members are the closest
 - Average or mean-shift
 - Calculate centroid/medoid of each cluster
 - Join the two closest
 - Wards or minimum variance
 - Join one to cause minimum variance
 - Divisive
 - Basically the same only in reverse

Distance Matrix

Every time you join two, those rows and columns are removed and replaced with one row & col for the new cluster

Dendogram

Clustering by Partitioning

- Forgy's algorithm
 - Start with N random seed points
 - Take each observation and place it in the cluster closest to it.
- K-means method
 - Similar to Forgy's,
 - Each time a point is added, the cluster medoid is recomputed
- Isodata algorithm
 - Like K means and Forgy's
 - Adapts and adjusts
 - Maximum and minimum cluster size
 - Much more complex

Two Dimensional View

Velocity

What is Happening

- There is correlation/relationships between variables, things are not just random
- Forms groups/clusters that describe a pattern of activity or features

Steps

- Plot out in N-Space
 - a dimension for each variable
- Put into clusters
- See how many naturally forming clusters
- Sort data into its cluster
- Analyze data
- Go back and remove variables with little effect (kind of like step-wise)
- Go to top and do process all over again

Distance

- Types of distance
 - Manhattan
 - Euclidean
 - Mahalanobis
- Compare distance within to between
 - Good if cluster is tight and they are far apart
 - Bad if cluster is big and they are close

Software

- SAS, SPSS provides some
- I used Kaufmann-Rousseuw and then modified it into matrices for faster operation on newer machines
 - Originally in Fortran 77
 - Then modified it for Fortran 95
 - Currently putting it into matrices
 - for multiprocessing Fortran 2003
 - K-R also available for R
- Many others available

How it is Done

- First use hierarchical aglomerative cluster
 Find out how many natural clusters
- The data is read into the program
- The data starts as N clusters
- The two closest clusters/items are made into one
- Distances within clusters are calculated
- Distances between medoids are calculated
- This is continued until there is but one remaining clusters
- Separation shows naturally

Natural Clusters

Observe

- See how many clusters form naturally
- Then go back to partitioning method
- Tell it this many clusters
- Cluster it into this number of clusters
- Or if a-priori data
 - e.g.
 - benign or malignant = 2 clusters
 - hit or miss = 2 clusters
 - Low, medium, or high = 3 clusters
 - Then cluster into the number of known groups

Partition Into Clusters

- N = the number of clusters is determined
- Create N random medoids
- Put data into cluster
 - Using one of the methods described earlier
- Some do this a number of times
 - I found 8 will cover it
 - Mean shift moves the clusters a little
 - To find the best clustering

Summary

- 1) Hierarchical clustering
- 2) Determine number of naturally forming clusters
- 3) Cluster into that many clusters
- 4) Remove variables as needed
- 5) Perform above on an individual cluster if needed
- 6) Analysis on each cluster
- 7) Removal of variables as needed

Cluster Description

- Now we have members of each cluster
- Do statistical descriptive analysis by variable
 - Mean
 - Median
 - Variance and standard deviation
 - Coefficient of variation (CV)
 - unscaled
- Sort variables within cluster by ascending CV
- Use this data to modify which variables used
- This data tells the story

Example

<u>Var</u>	<u>mean</u>	<u>median</u>	<u>sigma</u>	<u>CV</u>
С	4.5	5	.35	.08
В	2.7	3	.5	.19
А	6.5	7	1.9	.29
E	4.5	5	2.3	.51
D	5.2	5	3.1	.60

The last two variables are swinging all over the place and therefore do not contribute to the definition. (Their value does not help discriminate) The first two have a very tight range to be in this cluster

What Does it Tell Us?

- Which variables hang around together
- And at what values and ranges
- Once a cluster is identified it tells us
 - What variables in what range are in it
 - What variables do NOT define this cluster
 - Which are the most powerful variables
 - Patterns that create that cluster
 - What is going on in the data

Example

- Breast Cancer data
 - University of Wisconsin Hospitals
 - 699 observations
 - 11 Attributes for each
 - File number
 - 9 variables (ordinal scale 1 to 10)

 - Clump ThicknessUniformity of Cell Size
 - Uniformity of Cell Shape
 - Marginal Adhesion
 - Single Epithelial Cell Size
 - Bare Nuclei
 - Bland Chromatin
 - Normal Nucleoli
 - Mitoses
 - Truth (class: benign or malignant)

Step One

- Know that it is benign or malignant
- Partition into two groups
- Compare results against "truth"
 95% accurate classification
- Modify variables used to improve classification accuracy
 - Found that eight variables gave best accuracy
 - Slightly better classification rate

Step Two

- Sort out the known malignant observations
- Hierarchical cluster them
 - Seven* natural clusters
 - Seven situations describing malignancy
 - Each one tells a story
 - Each is a set of conditions describing cancer occurrence

* work done at last employer so I do not have the data These results are from memory

Step Three

- Cluster the malignant cases into 7 clusters
- Analyze each cluster
- Results:
 - Defines and describes 7 types of occurrence
 - The 7 clusters occupy less than 0.1% of the total volume of variable space
 - This would make for a very powerful classifier
 - I suspect that the 5% that were misclassified are due to errors in data collection/reporting

Suppose

- You had a sensor assembly
- That has 50 attributes for output
- If tried to use all 50 for pattern recognition
 - Too computationally intensive
 - Maybe multicollinearity
 - Maybe some add more noise than information
 - Want to get 'best bang for the buck'
- Do Exploratory Data Analysis
 - Cluster analysis
 - Discriminant analysis
- This will tell which variables to use

Applications

- Anywhere classification is needed
- Better understanding of a data set
- Synthetic immune systems
 - Network intrusion
 - Identification
- Safe operating areas
- Data driven knowledge
- Classifier with many variables
 - Identify the most powerful to use

References

- Kaufman-Rouseeuw "clusfind" software on CMU stat library
- Kaufman & Rousseeuw Book
- Statsoft web site on-line stats book
- SPSS web site
- Multivariate Analysis by Hair et al
 Pattern Recognition & Image Analysis by Gose, Johnsonbaugh, & Jost
- IEEE explore
- KD NuggetsWikipedia
- www.machine-cognition.com

Future

- This is now a home project
- I am working on putting this process into matrices for multiprocessing
- More extensive testing

My Work

- Cluster Analysis is not my focus
 I am a Decision Scientist
- - I work at methods to make the **best** possible and most intelligent decisions
- Cluster Analysis is one of my tools
 - It helps me to understand what is going on
- I also use other tools:
 - Neural networks
 - Statistics (descriptive, inferential, regression, ANOVA, etc)

 - Genetic Algorithms
 Fuzzy logic/ PNL Precisiated Natural Language
 Decision Theory
 Modeling & Simulation
 Data mining