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Computer Implementations
» Random forests
» Other programs
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Definition

« Process by which multiple models, such

—

- classifiers or experts, are strategically

Uses multiple models to get as good or
- better performance than the constituent
“models. 4

" to Occam's Razor?
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"Long-term Goal

Viake a high quality decision
- - Based upon accurate determination
» Classification

e Pattern recognition
* |dentification

- - Modeling and simulation

* Forecasts
e Expected resu

s‘»' )

> e |ntelligence
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Other Uses

h, Brove
~ - Classification

~ - Prediction

- - Function approximation
- - Model performance

EEelect features g
1 ~

¥ 1

, ental Learning
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‘When the need is for accurate
Classification

~ - Pattern recognition

-~ - ldentification
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KEI'S

A classifier that has other classifiers as its

Input
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Bt ond Sta ge Classification

+ Simplest is voting

~ _ Each first stage votes

__ — Answer with most votes wins
» Pattern recognition

— Can be many differences in first stage

. - Second stage can learn patterns 2
ay”
g~ More comp t can be more accurate

- - Requires supervised training asl
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Example

Government .
Each cabinet minister gives their conclusion
— Prime Minister listens to each of them
| - Based upon that information, PM makes decisio
“« Company

— Each department head gives his report
~ — CEO/President makes decision based on

* Computer

I""\l =
i W

ding into master classifier

- Many classifier
- Master finding pattern of results, makes deci
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Human Version

‘Each person giving their answer on the problem/situation.--:':‘
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- Mathematical Version

Problem or Data

L

Decision
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* What is Happening?

Each 'first stage'

"f-— Uses its expertise and methods
~ — Inits area of solution space

— Generates its own answer based on above
* 'Master' classifier

~ — Learns area of classification of each first stage

Learns patterns of results
" Generates ansmat is as good or better

any single first stage could. o
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Probabillities

__ had 6 first stages, each with P(error) =
* If used majority voting

~ - Would require at least 4 to be wrong to get
wrong classification

— Assuming independence among classifiers

* P(wrong decision) = 6C4 *0.1*=1.5x 103

e This increas uracy greatly
corr%n models should be

verse as possible aa
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Complex Decision Boundary

'?classifiers in first stage
¢ Each defines a piece of the boundary

'» Each operates in a different section of
~ variable space

= First stage classifiers are independent from
~each other 4 -
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— This is just yelling “multi-processing”
* Can handle large matrices of data

'« Supervised training can be done

\:J.l‘_

i
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~* Multiprocessing

| - Assign processors to each first stage

4,

‘ Do all first stag"t%sgme time
-~ If enough proc s, then assign to matrix

o
.
s

~_manipulations _a
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Random Forests m™

Breiman & Adele Cutler
~» Collection of decision trees

- — Controlled variation

- - Different subset of input variables (features) for -
each first stage classifier - Randomly chosen
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- Random Forests ™

- features noisy data

; _ Estimates the importance * Not as good as other _
- of variables/features methods on problems with

800d with missing data many variables/features
~* This is an experimental way
~ of determining variable
~interaction
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andom Multinomial Lo g

:.__':___ Like a Random Forest, but using Loglt w
~ of decision trees 4

« Good for multi-class output

 This alleviates the problem of too many
dimensions in MNL where it becomes too
-~ computationally intensive

--Works with books;‘appmg** and bagging**

Logit is SAS logistic regressi called Multnomial Logistic Regression ;

xplained in later slides
P

......
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~ Random Naive Bayes

» Naive Bayes classifier assumes variables to
- be conditionally independent |

First stage is a group of naive Bayes
- classifiers

~ - Random feature selection
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Boosting

» AT&T Labs
- Singer, Shapire, & Freund

| * AdaBoost (Adaptive Boosting)
Weighted training set

-~ Weighted to help reduce error
* Weight

lissed observations heavier
~ - lterative proc :

inal result is weighted majority of
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‘Strengths and Advantages

l” Better accuracy

'« Good application for multiprocessing
_ — Save time while increasing accuracy

- * Works with bootstrapping or bagging

- Random sampling with replenishment

“+ Works with Ia@;ﬁﬁata sets
data amongfirst stage classifiers
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' Reduces variance and helps avoid overfitting

" A training method where:

— Bootstrapping: Training dataset is multiply resampled with
replacement

- Aggregating: co | ini_!?gfmodels

o :
e Avera ression

» Voting fo Ification
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