Sampling and Sampling Theorem A Short Introduction by Brad Morantz brad@cognitive-decisions.com

Example

- Makebucks Coffee Company is developing an automatic coffee vending machine
- Need to test how full it fills the cup
 - Variation because of other water usage and system variables
 - Too full and it spills out
 - Waste of coffee
 - Spills on floor and can cause law suit
 - Not full enough
 - People kick machine causing damage
 - People get irritated, feeling cheated, buy elsewhere

Solution

- Put one of these machines in the hall
- Randomly through the day send someone to go get 4 cups of coffee from the machine.
- Measure the sample of the 4 cups of coffee
- Compile statistics of all of the samples over several days or weeks
- Calculate a confidence interval for average amount of coffee in a cup

Other Sampling Uses

- Surveys
- Quality control
- Product design
- Warranty
- Detective work
- Basically, take a sample that is representative of the population, and use that to describe the population or to perform some test

Definitions

- Sampling frame definition of the population
- Law of large numbers: if add up sufficiently large number of random variables, the sum will be normally distributed – Laplace

Central Limit Theorem

- If there is a population, of any distribution
- And you take a number of samples from it
 - The mean of the samples are approximately normally distributed
 - The mean of the samples is an estimator of the population mean
 - The sample variance of the samples is an estimator of the population variance
- A larger number of samples gets these estimators closer to the true values
- Laplace 1776

Sampling

- Have population of unknown distribution
- Take many samples from population
- If take many samples, distribution of the sample means will be normally distributed
- Use this to infer upon the population

Types of Sampling

- Simple random
 - All have equal probability of being sampled
- Systematic
 - Method for taking sample, like every tenth one
- Cluster
 - Organizing into clusters, then randomly select cluster to sample
- Stratified
 - Population split into strata, and then those are sampled

Non-Probability Sampling

- Judgment sample
 - Selected by expert
- Convenience sample
 - Done in a manner that is easier to do
 - Often biased

Another Example

- Badpoor tire company wants to know how many miles to warrant a certain tire
- If they test the tire, they will have nothing to sell
- If they claim too much, then they will get too many warranty claims and bad rap.
- If they warrant too little, they could have either raised the price or put on less rubber

Solution to Tire Example

- Sell tires to employees at good price
 They put on either 2 or 4 at a time
- Go out to employee parking lot and measure tires and read odometers

 Do this on regular basis
- From this data, calculate confidence interval
- Adjust warranty & price of tire

Sample Statistics

- \overline{X} or Xbar is the sample mean And is an unbiased estimator of μ
- S² is the sample variance

And is an unbiased estimator of $\sigma^{\scriptscriptstyle 2}$

• σ_x is the standard error of the mean

Notice that we use (n-1)

Confidence Interval

- In previous examples, suppose you now have sample data, and have calculated the sample statistics.
- How do you calculate a range that you expect the tires to wear, or how much coffee in a cup?
- Answer: Calculate the confidence interval or CI
 - They are typically 90%, 95%, or 99% interval

How to Calculate CI

*A*5

A5

.05

 $z_{.05} = 1.645$

.05

- Lower limit is Xbar Z * σ_x
- Upper limit is Xbar + Z * σ_x

 $-Z_{1-\alpha_{2}}$, $\overline{Z}_{\alpha_{1}}$, $\overline{Z}_{\alpha_{1}}$

The lower equation is the same as the two upper equations Decide on what percent confidence interval you need Look up the Z values (or t values) in the table or computer Plug in the values from your samples Calculate the upper and lower limit

Hypothesis Testing

- Well, do the tires have a mean wear life of 40,000 miles?
- Do the samples that we took show this with any confidence.
- Most companies use 95% confidence
- We need to test that hypothesis
- Calculate the 95% CI for the sample tires on employees cars
- Does that include the desired 40,000 miles?