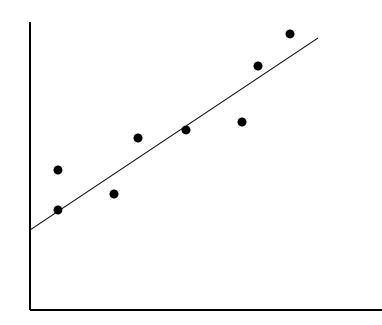
A Short Introduction to Curve Fitting and Regression by Brad Morantz bradscientist@machine-cognition.com

Overview

- What can regression do for me?
- Example
- Model building
- Error Metrics
- OLS Regression
- Robust Regression
- Correlation
- Regression Table
- Limitations
- Another method Maximum Likelihood

Example

- You have the mass, payload mass, and distance of a number of missiles.
- You need an equation for maximum distance based upon mass of missile & payload
- Regression will let you build a model, based upon these observations that will be of the form Max distance = B₁ * total mass + B₂ * payload mass + constant
- With this equation, you can answer questions


Model Building

- Why build a model?
 - It can help us to forecast
 - Can assist in design
- Two ways
 - Causal factors
 - Data driven
- Regression is the latter
 - Model based upon observations

MSE

- Residual
 - Difference between model and actual
 - $-e = Y \hat{Y}$
- If we summed them, the negative and positive would cancel out
- If we took Absolute value, would not be differentiable about origin
- So we take sum of squares
- MSE is mean of sum of squares

- Plot of values
- Line is the model
- Dots are the actual

RMSE

- RMSE = sqrt(MSE)
- If we accept that MSE is estimator of variance, then RMSE is estimator of standard deviation.
- It is also a metric of how much error there is, or how well a model fits a set of data
- MSE and RMSE are often used as cost functions in many mathematical operations

OLS Regression

- Ordinary Least Squares
- Yhat = $B_0 + B_1 X_1 + \ldots + B_n X_n + e$
- B₀ is the Y intercept
- B_n is the coefficient for each variate
- X_n is the variate
- e is the error
- The program calculates the coefficients to produce a line/model with the least amount of squared error (MSE)

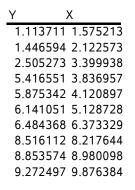
Robust Regression

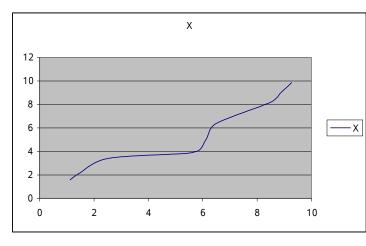
- Based on work by Kaufmann & Rousseuw
- Uses median instead of mean
- Not standard practice
- No automatic routines to do it
- Is less affected by outliers

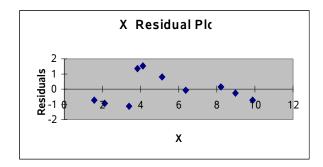
Simple Test of Model

- Plot out the residuals
- Look at this plot
- Are the residuals *approximately* constant?
- Or do you see a trend that they are growing or attenuating? (heteroscedasticity)
- If it is this latter situation, the causal factors are changing and the model will need to be modified

Linear Correlation Coefficient


- Shows the relationship between two variables
 - Positive means that they travel in the same direction
 - Negative means that they go in opposite directions
 - Like covariance, but it has no scale
 - Can use for comparisons
- Range is from -1 to +1
 - Zero means no relationship, or independent
- R_{xx} = X^TX (which becomes easy to implement in a matrix language like Fortran or Matlab)


Correlation and Dependence


- If two items are correlated, then
 - r ≠ 0
 - They are not independent
- If they are independent, then
 - -r = 0
 - -P(a) = P(a|b); b is of no effect on a
- Need to have some theory to support above

- Pearsonian correlation coefficient
- Square of r, the correlation coefficient
- Fraction of the variability in the system that is explained by this model
 - Real world is usually 10% to 70%
- Adjusted R²
 - Only use for model building
 - Penalizes for additional causal variables

Reading a Regression Table

This residual plot looks acceptable About as much on top as on bottom

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.9483					
R Square	0.899273					
Adjusted F	0.886682					
Standard	1.008021					
Observati	10					

The R Square is very good, so is the adjusted R Square This model is very explanatory

ANOVA

	df	SS	MS	F	ignificance F
Regressio	1	72.573	72.573	71.4226	4 2.94E-05
Residual	8	8.128851	1.016106		
Total	9	80.70185			

The model is good as the F value is >> 3 and the significance is << than 0.05

	Coefficientt	andard Er	t Stat	P-value	Lower 95%	Jpper 95%	ower 95.0J	pper 95.0%
Intercept	0.295648	0.7	0.422355	0.683888	3-1.318555	1.909852	-1.318555	1.909852
Х	0.982041	0.116201	8.451192	2.94E-05	5 0.71408	1.250002	0.71408	1.250002

X is a good coefficient, as it is statistically significant, but the intercept is not with a P of 0.68 and a t <3

Limitations of OLS

- Built on the assumption of linear relationship
 - Error grows when non-linear
 - Can use variable transformation
 - Harder to interpret
- Limited to one dependent variable
- Limited to range of data, can not accurately interpolate out of it

Maximum Likelihood

- Can calculate regression coefficients
 - If probability distribution of error terms is available
- Calculates the minimum variance unbiased estimators
- Calculates the best way to fit a mathematical model to the data
- Choose the estimate for unknown population parameter which would maximize the probability of getting what we have

References

- Applied Linear Statistical Models by Neter, Kutner, Nachtsheim, & Wasserman
- A Handbook for Linear Regression by Younger
- Introduction to Linear Regression Analysis by Montgomery & Peck
- *The Application of Regression Analysis* by Wittink
- A Second Course in Business Statistics: Regression Analysis by Mendenhall & McClave
- Most good statistics books have some information on regression analysis