
1

MultiProcessing Mathematics

Or
A Good Reason to

Spend the Money and Buy
a Multicore CPU Chip

By Brad Morantz PhD

2

Forward

● Multiprocessing mathematics is not the focus
of my research

● My research is in intelligent data analysis and
decision-making utilizing advanced
methodologies and machine-cognition

● Being able to process the numbers quicker and
in parallel is necessary for my work

3

Computationally Intensive

● Some problems take forever to calculate
– TSP Travelling Salesman Problem

– Weather forecast modeling

– Large simulations

– Many more

● Sometimes takes too long
● Clock speeds are about as fast as they can get
● Are you going to wait for a Feynman quantum

calculating chip? How long for that???

4

On the Other Hand

Six core, eight core, hyper threaded
More every day

There are many multicore
processors on the market today

5

GPU

● GPU = Graphics processing unit
● Limited functionality
● Some chips have as many as 256 cores
● Network of 6 PS3 playstations
● Nvidia CUDA GPU language
● Nvidia Tesla desktop supercomputer

– 515 GFLOPS to over 4 PetaFLOPS

● Big processing power at small price

6

What Gain?

● So, is your math program using more than one
of the cores? Probably not!

● Look at your core usage while the program
runs.

● The above picture is the goal, all of the CPUs
in use.

7

Goals

●Solve the problem clearly and efficiently
●Focus on the problem not the code
●Generate code that:

● Runs fast
● Is Parallel processing code
● Is easy to understand
● Written in math
● Comprehendable by mathematicians and SME

(subject matter experts)
● Will be understood in six months
● Is standard and portable
● Can be taken anywhere
● Will run on any platform
● That is close to the mathematical formulation
● Code that is clear and concise

GOALS
Focus on the problem

8

Most Important

● Why bother to write a program if it does not
produce the right answer

● Or maybe sometimes right, sometimes wrong
● Enter Verification and Validation

– Known as V&V (or IV&V)

– Subject for a whole semester

– Mandatory

Problems

2 + 2 = 5
5 X 3 = 14.7
12 / 3 = 6
10 – 4 = 5

9

Verification

● Boehm: “Are we building the product right?”
● Does the software correctly implement

 our function?
● Check the envelope for consistency
● The more variables, the more likely to have a

place where the system “goes postal”
● Design Analysis Simulation Experiments

– Full semester to study this
● Taguche, Latin Hypercube, Exploited search

10

Validation

● Boehm: “Are we building the right product?”
● In our situation, does this program really solve

our math problem?
● Do not want Type III error

– Right answer to the wrong problem

● Get a mathematician to check it over
– Must be able to comprehend the code

11

Definitions

● SISD
– Single Instruction Single Data

● SIMD
– Single Instruction Multiple Data

● MIMD
– Multiple Instruction Multiple Data

12

Typical Serial Processing

It can take a while until everyone has had a drink

Hey, quit pushing

13

Parallel Processing

Multiple Drinking Fountains

This will process three
Times as fast

Queuing would be even
Faster if the processes
Were of varying length
(Someone very thirsty)

Leave some
for the fish!

14

MIMD Processing

Two different processes going on at the same time

15

Non Equal Length Tasks

● Non trivial problem
● Best to use a modeling & simulation package
● Model each task and the processors
● Optimize for maximum throughput
● My experience

– 72 processor Sun box

– Complicated process

– Modeled using Arena

– Result: double throughput

16

Some Typical Applications

● Testing, system verification
● Genetic Algorithms
● Neural networks
● Structural equation modeling
● Large simulations
● Cluster analysis
● Statistical analysis of large data sets
● Signal processing of complex waveforms

17

Tight vs Loose Structure

● Some languages automatically adjust vector or
matrix size to fit the situation

– Does not tell when there is a problem

– Programmer is not in control

● Some languages require exact definitions
– Running over dimensions or size gives an error

message or warning

– This alert can save many problems

– Requires careful work of programmer

18

Example Problem

● I want to declare some matrices, fill them
with values calculated in long equations,
and then multiply them.

● And then test this program on various
machines and with varying number of
processors.

● I did this and got interesting results (see next
page)

19

Results
● For 1000 x 1000 matrix

– On my old Athlon 2000 (Linux)
● 142 seconds

– My dual Athlon 1800 (Linux)
● One processor 152 seconds
● Two processors 76.5 seconds

– My wife’s Athlon 3000-64 (Linux)
● 5 seconds

– Old Job on Dual Quad Core Xeon (Linux)
● One processor 2.8 seconds
● Eight processors 0.24 seconds

– My Hyperthreaded HP laptop at RMS (Core duo
Windows)

● 126.25 seconds

20

The code

Program Tryitout
Implicit none
real*16, dimension(:,:), allocatable :: A, B, C ! 16 byte floating point matrix, 2D
integer*4 :: row, i, j
real*4 :: starttime, donetime
print*, 'What size array? Start with square array'
read*, row
allocate(A(row,row), B(row,row), C(row,row))
call cpu_time(starttime)
blockit: forall (i = 1:row:1, j = 1:row:1)
A(i, j) = ((real(i)) **2) * sin(real(i)/real(j))
B(i, j) = (real(i))/(real(j)) * cos (real(i/j))
end forall blockit
c = matmul(a,b)
call cpu_time(donetime)
print*, 'it took ',(donetime-starttime), ' seconds'
end program tryitout

21

Some Comments

● Want to be able to use complex variables
– No change in program
– Except variable declaration

● Want to be able to control precision
– With large number of iterations

● Want to put it across all processors
– Run faster

● Start with a plan, a design
– The best made things have a design first
– Plans are mandatory for good design

22

Think Parallel
(The Hardest Part)

● Programmer must think parallel
– Think matrices not scalars
– Think parallel not serial
– Think wide not narrow

● Algorithm must be parallel
● Think in parallel mode

– Will this go into a matrix
– How can I put this into a vector
– How can this be made more parallel

● How can this be done in parallel mode

23

Parallel Algorithm

● Work out algorithm
● Draw pictures and diagrams
● Work for parallel processes
● Make flow chart
● How can things go into loops or matrices
● Independence (next slide)

24

Independence

● Matrices and loops can be automatically
parallelized

● Must be independent
– One value in array can not be dependent

upon result of another

– The order must not be important

● Think if you had a large problem
– Have friends helping you

– Give each of them part of problem to do

25

Where is the Parallelization

● The old way (1 CPU or core)
– Do 100 J = 1, 1000, 1
– X(J) =J**2
– 100 continue

● The Parallel way (using multiple CPUs or cores)
– Forall (J = 1:1000:1) X(J) = J**2

● So what is really happening?
– The compiler first checks for independence
– Then it divides the 1000 by the number of CPUs
– Then it puts the process across all of the CPUs

● Process 1 to 250 on CPU #1
● Process 251 to 500 on CPU #2
● And so on

26

Parallelization Considerations

● Overhead
– Setting up and supervising takes work & time

– Usually not worth it for small number iterations

– Can exceed savings if not careful

● Control
– Some compilers offer control

– Set integer
● Usually from 1 to 100
● Do not parallelize if under this number

27

Another Example

Suppose:
● You had a matrix of numbers (a whole bunch

of numbers) and wanted a slice of it
● And there were some missing numbers

(signified by the value 9999.0)
● And you wanted to get the mean of columns in

this slice, creating a new matrix of 1 less
dimension

● And you wanted to utilize all of your
processors.

● And you want the code to be maintainable,
easy to understand, & portable

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

Matrix

slice of the matrix

 It could be more than
 the 2 dimensions shown here1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 0 8 7 6 5 4 3 2

29

Matrix Code

mean(row,:) = sum(inarray(first:last,:), dim=1,
mask=inarray(first:last,:) .NE. 9999.0)

! note: arrays must be conformable
adjust(:) = count(inarray(first:last,:) .EQ. 9999.0, dim=1)
mean(row, :) = mean(row,:)/(last- first +1 – adjust(:))
! this is code out of a program

● This does it all in these 3 lines.
● And it uses all of the processors.
● It is even doing it on slices out of a big matrix. It creates a

matrix of means.
● Actual working code out of one of my programs
● Could have been in 1 line, but would have been hard to

read

30

Mathematical Languages

● Matlab, Mathematica, Octave, Scilab
– Interpretive
– Matlab & Mathematica have some multiprocessing

functions
● Costs $$$

– Octave & Scilab are free
● Fortran 95/2003/2008

– Do NOT confuse with the old Fortran 77
– Compiled
– Many multiprocessing implementations
– Many free compilers
– Comparisons at www.polyhedron.com

● Many more

http://www.polyhedron.com/

31

Graphics Programming Languages

● For Graphic Processing Units
● Yorick

– Scripting matrix language (Interprative)
– Created by a physicist
– C like syntax
– Free for Linux

● Nvidia CUDA

32

Mathematica

● New in Mathematica 7
– Parallelize - for matrices and vectors
– ParallelTry – Tries a function in parallel

● Multicore parallelism standard
– with zero configuration

● Flexible data parallelism functions built-in
● Built-in interface for GPU computing
● GridMathematica (more $) is option

– Can run as much as 4 tasks in parallel

● Mathematica 8 uses CUDA

33

Portland Group

● Workstation x64
– Fortran 2003 optimizing multicore compiler

● CUDA Fortran
– GPU acceleration in native optimizing compiler

34

Intel

● Fortran Composer XE 2011
– Optimizing

– Multiprocessing

– Math Kernel Library

– Free academic use only for Linux

35

Absoft

● Multiprocessing
● GPU support
● Optimizing
● Fastest from Polyhedron tests
● Expensive

36

GNU Free Software Foundation

● Free! (no charge)
● Will parallelize with OMP

– Not as easy

– Extra work

● Code must be exact per specs

Overview Fortran 95/2003/2008
 Automatic Parallelization
 Matrix functions
 Object oriented
 Complex math built in
 16 byte floating point (32 byte complex)
 Bit and string functions
 Structures and arrays
 ISO standard
 Backward compatibility
 Dynamic allocation
 From matlab code to Fortran in minutes
 Originally started as HPF at Rice/MIT

38

Parallel Functions

● ALL – are all values in mask true?
● ANY – are any values in mask true?
● COUNT – dimensional reduction, mask ok
● MAXVAL – reduction or scalar, mask OK
● MINVAL – reduction or scalar, mask OK
● PRODUCT – of element of array along DIM
● SUM – reduction or scalar, mask OK
● MATMUL - matrix multiply
● MERGE- merge 2 array with mask
● SPREAD (Source, Dim, Ncopies)

39

More Parallel Functions

● PACK(Array, Mask [,Vector])
● UNPACK(Vector, Mask, Field)
● TRANSPOSE
● CSHIFT -circular shift
● EOSHIFT – end off shift
● MAXLOC – first location of max value
● MINLOC – first location of min value
● FORALL parallel looping
● WHERE masking function
● ELSEWHERE masking function

40

More Array Functions

● LBOUND - inquiry
● UBOUND - inquiry
● SIZE - inquiry
● SHAPE - inquiry
● RESHAPE - transformational
● DOT_PRODUCT- dot product multiplication
● ALLOCATE – assign storage
● ALLOCATED- inquiry

41

Addressing Matrices

● Address a row
– A(row,:)

● Address a column
– A(:, col)

● Address a slice (This is neat!)
– A(d:f, h:12)

● Address a matrix
– A
– print*, A

From Matrix A

To: Matrix B

42

Elemental Matrix Math

● A, B, C are matrices, same size
● C = A*B multiplication
● C = A+B addition
● C = A/B division
● C = A-B subtraction
● C = 0.0 initialization
● Automatic multiprocessing

– If enabled
– Depending on compiler and machine

43

Matrix Multiplication

● A,B,C are matrices
● C = matmul(A,B)
● Arrays must be of same type

– integer, real, complex, or logical
● [n,m] x [m,k] = [n,k]
● [m] x [m,k] = [k]
● Automatic multiprocessing

– depending on compiler and machine
– if enabled

44

MAXVAL

● MAXVAL(ARRAY, DIM, MASK)
● creates a new array or assigns

– 1 less dimension
– max value along dimension DIM
– corresponding to TRUE elements of MASK

● Ex: maxivals = MAXVAL(A, DIM=2,
MASK=A.GE.0.0)

● MINVAL is the same, but gets the minimum

45

MINLOC

● MINLOC(ARRAY, DIM, MASK)
● Creates or assigns array of 1 less dimension
● Finds location of first element of ARRAY

having minimum value of elements as
defined by MASK

● DIM is optional
● Ex: MINLOC(A, DIM=1, A.GT.12)

46

FORALL

● Like the do loop, but uses all available CPUs
● FORALL(I=1:N, J=1:M) A(I,J) = I+J
● Loop1: FORALL (I=1:N:0.50)

WHERE (A(2*I).GE.43), A(INT(I)) = I**2

 end loop1
(Naming loops is optional, but when used, compiler will match

names. Another case where time spent in organization pays off
in accuracy and performance)

● Part of HPF specification (Rice/MIT)
– automatic multiprocessing

47

WHERE

● Masked array assignment
hot: WHERE(A >= 27.32)
temp = temp + degree
ELSEWHERE
cold = cold + degree
END WHERE hot
● WHERE (A < 0.0) A = -A

– Single line, creates non-negative matrix
– A could be N dimension matrix
– Can use multiprocessors
– No need for indices

48

Assignments

● A, B same size matrices
– A = B
– A(f:g, 3) = B(f:g, 5)
– c = A(x,y) * B(p,q)
– D = A(1:3, 2:4) * B(23:25, 16:18)

● Automatic multiprocessing
– If enabled

● Target must be same shape and size as
source

● Or source can be a scalar

49

Other Mathematical Features

● 128 bit (16 byte) variables/ 32 byte complex
● Compiler takes care of the work
● Complex math (on all complex numbers)
● Arrays of structures
● Structures of arrays (including allocatable)
● RECURSIVE
● Operator & function overloading
● Modules
● PURE
● Floating point exception handling
● IEEE floating point math

Math Library

● The Intel Fortran comes with a complete library
– Optimized for multiprocessing

– Based on IMSL & BLAS

● Others are not multiprocessing
– GNU Scientific Library

– Lapack

– Many more

– With source code can be parallelized

● Math Library available with others for extra $

Summary

 Fortran 95/2003/2008

− is for computationally intensive applications

− Provides fast processing

− Inherent parallelism

− Compiles to assembly code

− Runs efficiently

− Converts quickly and easily from Matlab etc.

− Deliverable tool

− Multiprocessing with little effort

Multi Language

● Can use languages together
● Computation in Fortran and GUI in C or Java

– Wrapper

– Very common

● Octave, Scilab, & R can have functions in
C/C++ or Fortran

– Also common

– Can be multiprocessing functions

53

The Process

● Design and develop parallel algorithm
● Test out algorithm
● Make flowchart
● Develop the algorithm in Matlab or

Mathematica
● Then put it into Fortran 95/2003/2008
● Do not parallel where overhead > savings
● V&V

– Mathematician to validate algorithm
– Test matrix and verify output

Resources
 www.g95.org

− free compiler, no multi-processing
 promises multiprocessing in future

− lots of links
 Intel (lots of info on optimization)

− www.intel.com/software/products/compilers
− Free compiler for home use only (Linux)
− With automatic multi-processing (APO)

 www.fortran.com
 www.gnu.org

– Free compiler GCC - 4.1+
– Gedit – free editor, color coded

 www.mhpcc.edu/training/tutorials

Intel Notes

It is Sometimes easier for the Fortan compiler
to optimize matrix code than for the C
compiler because the C standard permits
more hidden aliasing of pointers than does
Fortran

Neural Net

 How many LOC's in C/C++?
 Wait until you see it in Fortran 95/2003

− 4 lines!!
− Maintainable
− Mathematical
− Easy to understand

Function linear . . . out = matmul(A,B)
Function logistic . .(sigmoidal or hyperbolic tan)
Mid = logistic(matmul(input, weight1))
Out = linear(matmul(mid, weight2))

Structural Equations

● Currently modeled on single processor boxes
– Lisrel, PLS, etc

● Complex system where sections affect each
other

● Large number of processors can perform this
without trying to model and simulate

– More accurate answer

– See response over time

– Can see effect of connections

● Specialized graduate course

Simple S. E. System

My Philosophy

As a decision scientist, my goal is to solve

problems and find the best possible solution.

The best answers are based upon knowledge

and information.

Contact Information
 Brad Morantz
 Web page: www.machine-cognition.com
 Personal e-mail bradscientist@ieee.org

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

