Intelligent Decision Making

by Dr Brad Morantz

Copyright 2015

Intelligent Decision Making

- Should I go to this class?
 - Yes
 - Or No
 - First decision of the day
- 1) This is NOT the first decision of the day
- 2) Lets make it an intelligent decision

Well, what about it?

- •What is the first decision of the day?
 - The alarm goes off.
 - Hit the snooze button or get up?
 - That is the first question of the day

- What should I wear today?
- It goes on like this.
- 300 400 questions a day

How to make the decision

Impulsive

- I'm tired, late night last nite, hit the snooze
- What the heck, I'll get up soon

Emotional

- Who cares, my boss hates me anyways, hit the snooze
- Intelligent
 - What will happen either way?
 - What are the costs of each alternative decision?
 - How do these compare to desired outcomes?

Important Decision

- Company A has the opportunity to buy Company B for \$100 Million
 - If this is a good move,
 - Company A could grow, take a large portion of the market, and increase their net profit, increasing shareholder equity.
 - Would also give a big bonus to the executives
 - If this a bad move,
 - it could bankrupt Company A, ending their existence
 - The executives would lose their grossly overpaid position
- This is a very important decision

What is this 'Intelligence'?

- Ability to understand or reason (dictionary)
- Mental Ability (Encyclopedia)
 - Learning
 - Problem solving
 - Abstract thinking
 - Reasoning
 - Spatial manipulation
 - Language acquisition
 - That which is measured on an IQ test
- Herb Simon
 - Involves associations, pattern recognition, inference, experience, and intuition

Definitions

Decision

- A conclusion or selection after consideration
- Considers needs, preferences, and values one has or seeks

Decision-Making

 Cognitive process resulting in the selection of a belief or course of action among several alternative possibilities, based on values and preferences of the decision maker

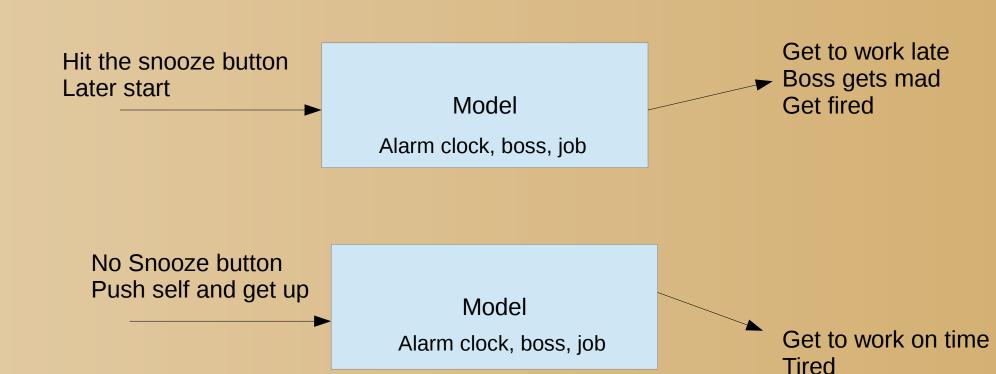
Intelligent Decision-Making

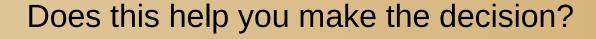
- Using intelligence in making a decision
- To improve the quality of the decision

Axiom

- The best decisions are made based on knowledge and information
 - Harvey Brightman

Define the Problem


- What exactly are we trying to decide?
- Important step, if not correct, answer may not be
- Avoid type III error → right answer to wrong problem

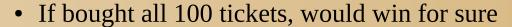


Model Based Decision-Making

- Build a model of the system
 - In this case the alarm clock, the boss, and the job
 - Capable of forecasting results of any action option
- Input the action options (alternatives)
- Record the results
- Compare them to the desired results
- This is a Model Based Decision Support System (MBDSS)
- Decisions are made based on what the model predicts

Model Based Decision-Making

Still have job


Simple Mathematics

- The grocery store says that if I buy from them, then I will get a discount on my gasoline.
- Lets put some numbers to these facts
 - They will give me a \$1 discount per gallon if I spend \$1000.00
 - My car has an 11 gallon tank, and does not go on empty
 - I can save 10 to 15% by watching sales and shopping around
- Result: It will cost \$100 to \$150 at the store in order to save at best \$10 at the gas pump

Expected Monetary Value (EMV)

- A lottery ticket
 - 1 chance in 100 to win (1% or 0.01)
 - Ticket costs \$1
 - Can win \$100

- Spend \$100
- Win \$100
- No gain
- EMV (of a ticket) = Probability of win times prize (P(w) * \$)
 - In this case $\rightarrow 0.01 * $100 = 1
- Cost of ticket equals the EMV, do not bother with it, unless you like the thrill

Using EMV to Help Decision-Making

- Magazine company has sweepstakes
 - Chance of winning is 1 in 20 million
 - Cost to enter is 1 postage stamp (\$0.49)
 - Grand prize is \$1.5 million
- EMV = $(5 * 10^{-8}) * (\$1.5 * 10^{6}) = \$0.075 (7 \frac{1}{2})$ cents
- Compare to cost of entry
- Does this help make an intelligent decision?

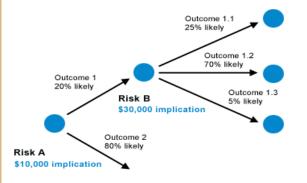
Inference

- A friend invites you to a multi-level marketing meeting
- They tell you that you will make much money
- Time to get the facts & statistics
 - How many people get involved with this?
 - How many make lots of money?
 - What are the descriptive statistics?
 - How many sigma out is this?
 - What can be inferred from the statistics?
 - Does this help you make a decision?

Inference Logic

- Someone wants to sign you up to sell Pway
- This person is not loaded with money (same person that is always borrowing money to buy a soda)
- You can infer that selling Pway is not the way to make lots of money

Statistical Inference


- Marketing director at tire company
- Must make decision on how long of a warranty on new tire
- Sell tires to employees
- Monitor them in the parking lot
- Get statistics and test results
 - Plot time and mileage life of test tires
 - Do the statistics
 - How much time and miles is included in 2 sigma?
- Does this help you make a decision?

Decision Trees

• A tree like graph that models decisions and possible consequences, including stochastic nodes

- Similar to flow chart
- Each path is a decision rule
- Allows calculation of expected values
- Most can be implemented in a spreadsheet
 - Very handy, does all math and formulas
- A great tool for assisting in decision-making

Understanding Decision Trees

- What does each path in the decision tree indicate
 - What impact will it have?
 - How will it solve your problem?
 - What other actions will it cause, negative & positive?
 - Is this the best solution?
 - What risks does it present?
- Shows all of the possibilities
 - Can now compare them
 - Find the one that best meets desired outcome

Decision Table

- Build a table
- Criteria on the left column
- Next column is importance
- Alternatives across the top
- Rate each alternative for each criterion
- Multiply by importance
- Add weighted average
- Look for highest score

Decision Table Example

<u>Basis</u>	<u>Weight</u>	Job A	<u>Job B</u>	Job C
Pay	.75	\$100K	\$90K	\$60K
City	.75	Bad	SO-SO	Good
Benefits	.55	Fair	None	Good
Climate	.60	Cold	Moderate	Good
Advancement .80		Good	SO-SO	Good

Pattern Recognition

- Think about your job
- Reasons that the boss promoted people
- Reasons that the boss fired people
- Is there a common pattern for each?
 - Sleeping at desk
 - Personal phone calls
 - Getting to work late
 - Landing a big contract

Computerized Pattern Recognition

- Specialized programs
 - e.g. Image pattern recognition, statistical, temporal, ANN, etc
 - Learns on historical data (training)
 - Recognizes it when it sees it again

Military Use of Pattern Recognition

- Person is manning a radar station
 - Sees incoming blip on radar screen
- Look at Radar Cross Section (RCS)
 - Can the object be identified/ pattern recognized?
- Watch behavior
 - Recognize behavior of friend or foe?
- Combine with information from other sources
- C.O. must make decision on action to take based on information and pattern recognition

Data Mining

- A friend tries to sign you up to sell peanut butter
 - Promises big profit
 - Popular product, sell great quantities
- Do data mining of grocery store data
 - Find that only 1 in 5 people buy peanut butter
 - See that they buy 1 jar for every 3 loaves of bread
- Data mining shows sales of peanut butter are not great
- * Numbers are only made up

Abstract Thinking

- Use the same example of the snooze alarm
- First list the action options
- Then think about each one
- What will happen if you select each one
- Think about what will happen, do not just act

Intuition

- Just get an email that you won a million dollars in the Spanish lottery.
 - Just send in bank account numbers as they request
- Wait a minute, I have a bad feeling about this

Experience

- Someone comes up and asks to borrow \$10 for lunch
- Must decide whether to do it or not
- Experiences:
 - Did he/she ever borrow from you before
 - Did he/she ever borrow from someone you know
 - If so, was the debt paid back
- Apply this to the decision making process

Use Knowledge to Improve Quality

- One needs to buy a car, the decision is which one to buy
- Emotional decision-making
 - The red sports car is shnazzy, I choose to buy that one
- Intelligent decision-making
 - Use learning
 - Learn about the various cars out there
 - Go to library and look in Consumer Reports
 - Get on the internet and read reviews
 - Go talk to your mechanic
 - Speak with owners of various models
 - Employ an AI method to learn
 - Build a spread sheet of your finances, include a budget
 - Other aspects such as purpose, features, requirements, etc.

Knowledge Based DSS

- System that has many knowledge/information sources
- May have rule base
- Example: Auto Rental System
 - What is current inventory
 - Know what is reserved for when
 - Tap into knowledge base for each customer
 - Credit
 - Driving history
 - Compeitors pricing

Multiple Criteria

- Decisions with one output are much easier
 - How much money, winnings, etc
- Multi-criteria are more complex
 - Can have trade-offs
 - Multiple results
 - One can get better
 - As other gets worse
 - How to decide
 - Example: Drive faster to go to work, risk getting speeding ticket
 - The cost of a speeding ticket can more than offset the extra made at work
 - Optimal is fastest can drive without getting ticket

Utility

- How important is it to keep this job?
 - Inherited a bazillion* dollars?
 - Or, working paycheck to paycheck
- Must consider the value to the person at that time
- A dime laying on the ground as Bill Gates walks by
- A bottle of water to a guy walking across the desert

Utility Example

- A raffle to win a big fancy steak dinner for two
 - \$100 value
 - \$1 ticket
 - 1 in 5 chance of winning
 - Non-transferrable
- Math says expected monetary value is \$20, much more than ticket
- For a vegetarian it is a poor decision to buy a ticket
 - No utility so why spend the \$1

Cost of Decision

- Every decision has a cost
- Often making a wrong (or not best/optimal) decision has a cost
- These costs must be considered when decision-making

Cost Example

- In military or computer game, enemy can make surprise attack
- If call up reserves and prepare for an attack, there is an expense.
- If not call up and there is no attack then no expense
- If not call up and there is an attack, can be a gigantic expense, loss of life, property, finances, freedom, etc

Information Processing

- Computers can be very helpful
- Focus on the problem, NOT the computer
- Model for MBDSS (Opnet, Arena, GPSS, etc)
- Forecasting (SAS, R, SPSS, PSPP, S+, ANN, etc)
- Data mining (Clementine, Enterprise Miner, etc)
- Decision Trees (C4.5, Answer Tree, Excel, etc)
- Pattern recognition (ANN, OLS, specialized programs)
- Prolog for logic comprehension (Prolog, Turbo Prolog)

References

- Zeleny, M., Multi Criteria Decision Making, McGraw-Hill
- Morantz, B., *Neural Network Time Series Forecasting Using Recency Weighting*, The Encyclopedia of Decision Support Systems
- My Website www.machine-cognition.com
- Lapin, L., Quanititative Methods for Business Decisions
- Bennett, J., Building Decision Support Systems
- Dharr, V. & Stein, R., Intelligent Decision Support Methods
- Russell, S, & Norvig, P., Artificial Intelligence: A Modern Approach

