Cognitive Identification

Preliminary
Presentation
by
Dr Brad Morantz

Did You Ever

- Walk into a restaurant
- See someone familiar
- Know that you know him
- But can not remember who it is

Utilize

- All available sensors
- All knowledge (what is relevant?)
- Inductive logic
- Deductive logic
- Compare to model
- Dempster-Shaffer
- Statistics
- Membership or lack of in a group

Your Recognition is a Combination

- Contextual Information
- Recognition
- Intuition
- Instinct/feelings
- > Hints
- Reminders
- Familiarity
- Senses
- Knowledge

Contextual

Contextual Information:

- Where do you know this person
- Your relationship
- What he is wearing during normal times
- > Time
- > Place
- > Situation
- Their behavior
- Who or what they are with
- Correlation between objects in scene

Recognition

- Recognize the person
- Looks just like a picture
- Features match
- Recognition by components
- Knowledge about the person
- Perceptual process

Instinct or Feelings

- You get this feeling that you know who it is
- Maybe a feeling of a connection

Hints

The person asks if your car is running better, this is your mechanic

Reminders

- Someone says "isn't that your mechanic?"
- Someone says "Isn't he a mechanic at XX Auto Repair?"

Familiarity

Go to lunch with mechanic, so you are familiar with him

Senses

- Sight ophthalmoception
- Hearing audioception
- Taste gustaoception
- Smell Olfacoception
- Touch tactioception
- ESP extra sensory perception

Identification Definitions

the act of finding out who someone is or what something is: the act of identifying someone or something

(http://www.merriam-webster.com)

the action of recognizing something that you are looking for

(http://www.macmillandictionary.com)

Recognition Definitions

- Identify or categorize objects in environment
- Identify a thing from previous encounters or stimuli

-

Confusion

- Other similar objects in scene
- Some intentional to cause confusion
- Decoys

Difference

Recognition

Subcategory of Identification

Have seen before

Have patterns

Have image

Have data

Perceptual process

Identification

Maybe never saw before

Maybe never encountered

Know about

Have data

Have knowledge

Cognitive process

Examples

Recognize

Identify w/o Previous

Your parent

CEO of work

Your pet

Long lost cousin

Favorite cereal

Boeing 787

Your friend

SR-71 blackbird

Your friend's car

Ferrari Berlinetta (Never actually saw one, but know about it and what it is)

Recognition vs Identification

- Recognition is encountering a stimulus same or similar to one in the past
- Recognition is identification from previous encounters or knowledge
- Identification is more general
- Identification can be more cognitive, includes recognition AND never before 'seen'
- Identification can require logic and reasoning

Identification of Previously Unseen

- Requires both inductive and deductive reasoning
- New data can strengthen or weaken old data
- Cognitively combine and rationalize diverse information
- Have information
 - More than no information
 - Can be incomplete and imperfect, even incorrect
 - Can have new data arriving
 - Can have multiple sources
- Apply deductive logic, Bayesian logic, Dempster Shaffer, etc.

Compare to Biological

- Pattern generalizability
 - Change in distance, size, color, lighting, angle, etc
 - Humans can still recognize
 - Can be subconscious processing
 - Computer vision has its limitations
 - Being overcome

Example

- Told to go to airport to pick up "Aunt Sally"
- Have never seen her
- If have photo, how old is it?
- Been given information
 - Maybe hair color changed
 - Maybe put on or lost weight
 - Given other information
- How to find and identify her is problem

Model Based Decision Support

- Build a model of what you think it is
- Collect time series data of observations
- Compare the two
 - Are they getting closer together
 - Or further apart
- Also called MBDSS

MBDSS Example

- Think it is an airplane
- Build a model of an airplane
 - > Flies in the air
 - > Has wings
 - Runs on fuel or some energy source
 - Built by man
 - Has engine, jet and/or propeller
- Compare what you have to the model

Exclusion

- Prove that it is NOT the desired object
 - Many things can rule it out
 - Who or what it is with,
 - e.g. Railroad train over ocean, airplane traveling with a swimming pool, etc
 - > Features
 - e.g. size, speed, color, mass
- Reduces the size of the pool of potentials

Airplane Example Cont'd

- What if Doppler radar says that it is going .5C
- What if it is in water
- What if tracker time series has it doing things that airplane can not do
- In other words: features of object is not similar to the model

System Requirements

- Must be flexible and adaptive
 - Able to change the way it thinks about object or group of objects
 - Able to accept updates, additions, replacements without disrupting system
- Accept information from variety of sources

>

Information Sources

- Can be multiple
- Various types
 - > IR
 - Visual spectrum optical
 - > Texture
 - > Smell
 - Weight
 - > Radar
- May be conflicting

Pattern Generalizability

- Must be able to recognize if
 - Different viewing angle
 - Distance affecting size in view
 - Changes in color, dress, etc
 - Additions (hat, jacket, wing or fin, etc)
 - Different time, place, or context

References

- http://www.machine-cognition.com
- Unifed Theories of Cognition, Allen Newell
- http://www.ieee-cis.org
- Cognition by Daniel Reisberg

>