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Brief Background of Authors

 Kuang is in Computer Science
 Leslie is from Pharmacology
 Yang is in Pharmacology, Columbia Genome 

 Center, and Computational Biology and 
Bioinformatics

 Research Funded by NIH and PhRMA



Importance of this Paper

 Protein backbone torsion angle provides 
more information than alpha, beta, & coil 
(conventional 3 state predictions)

 More information will contribute to better 
modeling of local structure of protein 
sequence segments

 Structure and function are highly correlated
 Hence, will allow better prediction of protein 

function



Introduction & Background

 Protein backbone torsion angles are highly 
correlated to protein secondary structures

 Loop residues in protein chain structurally 
determine regular secondary structure 
elements which leads to specific  protein 
folding topology

 Involve enzymatic activities and protein to 
protein interactions such as antibody and 
antigen



The Key Concept

 The analysis of protein sequence-structure 
function relationship is facilitated significantly 
by local structure information from predictive 
algorithms



More Background

 Conformational variability is high, causing 
problems in molecular modeling.

 Three state (alpha, beta, & coil) structure 
modeling do not distinguish loop structure

 Backbone torsion angle modeling helps in 
modeling loop regions

 Little attention has been paid to this area.



Literature Review

 DeBrevern et al (2000): study of predictability
 Bystroff et al (2000): first backbone torsion 

angle work using HMM
 Karchin (2003): fold recognition, not 

prediction
 Yang & Wang (2003): database prediction 

using RMS residual



Overview of ANNs
(Artificial Neural Networks)

 In Supervised mode
− Data driven general function approximator
− Teacher shows it examples and what each one 

is.  The ANN is trained on this information.
− Now show it something and it will tell you what it 

is.
− It also functions like regression, only not 

constrained to linear functions
− Black box performance
− No understanding available from internal 

parameters



Non Linear Regression

Training
1, 2, 4 21
3, 5, 2 38
4, 4, 6 68
5, 7, 7 99
7, 7, 7 99.3
10, 10, 2 99.6

Testing
1, 2, 5 30
4, 4, 4 48
5, 6, 4 77
8, 8, 8 99.4
9, 9, 6 99.5
Note: not tested on same as training

Concept: sum of squares of 
inputs but total never quite 
reaches 100



Pattern Recognition

Apple

Flower



Support Vector Machine

 Linear Separator
 Draws line to divide groups
 Attempts to maximize width of line

− Create fences to maximize separation
 Trade off is trying to maximize width but then 

there are more violations
 Concept expanded for N space
 PSVM has polynomial kernel

− Allows curved line to separate
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Example from Cohen & Hudson



Goal

 Predict backbone conformational state of 
each residue in protein chains

 Based on 4 (A, B, G, E) or 3 (A, B, G/E) 
conformational states



Hypothesis

 The two methods (SVM & ANN) are more 
accurate at predicting backbone torsion 
angle than previously published methods



Methodology

 Protein backbone torsion angles mapped 
onto Φ-Ψ plot.

 Divide the map into the 4 conformational 
states (A, B, G, & E)

 Use PSSM (position specific score matrix)
 Use nine-sequence segments in non-

redundant protein structures



The ANN Predictor

 216 input nodes
− 9 groups of 24 (1 group for each residue)

 Categorical inputs of the 20 amino acids
 Flag for residue position outside the C or N terminus 

of the protein chain
 3 for backbone torsion angle prediction from LSBPS1 

database
 50 nodes in hidden layer
 3 output nodes

− A, B, & G/E
 E has only 1.7% of training cases so grouped with G



Methodology Cont'd
 Output from ANN converted to PSSM 

(position specific score matrix) by using long 
formula

 ANN trained on line
− I suspect back propagation
− Not related to the testing set
− Terminated training when accuracy attenuated
− Wrong way to do it!
− Indicative of other mistakes

 10 fold Jack-knife cross validation process
− 10 runs, each with a different 10% testing set
− Average of runs used for predictive accuracy



Accuracy Calculation

 Compare true backbone conformational state 
 with predicted

 Predicted by using the output node with the 
largest value 

 Then run trained ANN on entirely new set of 
proteins

 Cross validation produced average accuracy 
of 78.2%



Comparing Input Contribution

 Amino acids only gave 61.5%
 Torsion angle prediction from database gave 

67.8%
 Both together gave 78.2%
 Not surprising 

− Standard method as more information supplied 
then better result expected



SVM Prediction

 Classification of 3 or 4 conformational states
 Inputs:

− Amino acid sequences
− Profiles  from PSI Blast
− secondary structures from PSI-Pred

 Input vector 189 dimensions
− 9 protein sequences
− 21 to code the categorical data for each

 Choose prediction to be class that gives the 
biggest margin for each example

 Use publicly available SVM light package



Testing the SVM

 Dunbrack-culled PDB dataset
− Benchmark testing to compare to literature

 LSBSP1 dataset
− 10 fold cross validation

 Results about the same for both methods
 Dunbrack-in scop dataset

− 3 fold cross validation to match other test



SVM

 Binary mapping worse
 Profile mapping 6% better
 Secondary feature mapping 3% better
 Profile and secondary good in alpha and 

beta regions, but less in the loops
 No mention of repeatability (precision), 

ANOVA, or t tests  (which means these close 
margins prove absolutely nothing)

 Polynomial kernel tried but only 1% 
improvement (see above note)



ANN and LSBSP1

 81.5%  of A Backbone correctly predicted
 76.6% of B backbone correctly predicted
 46.5% of G/E backbone correctly predicted
 77% correct overall
 Large enough sample size to be valid test 

Results



SVM vs ANN

 SVM better than ANN
− On all residues 78.7% vs 78.2%
− On loop residues 65.1% vs 63.5%

 No proper statistics supplied in support of 
this conclusion

− 1% difference would easily be statistically 
insignificant with a large enough variance



Conclusions

 Optimally combining information to improve 
prediction is standard in decision science, 
but is “a difficult challenge in knowledge-
based  protein structure prediction 
procedures”

 Nearing limit of prediction accuracy of protein 
structures.

 Notice that they did not address the original 
hypothesis, nor do statistical testing to 
compare against other published work



Additional References

 IEEE Computational Intelligence Society
− www.cis-ieee.org

 Author's web page
− www.cs.columbia.edu/compbio/backbone
− www.columbia.edu/~ayl

 Brad's web page
− www.machine-cognition.com

 AAAI- American Association for Artificial 
Intelligence

− www.aaai.org
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