### **Phylogenetic Trees**

What They Are Why We Do It & How To Do It

> Presented by Amy Harris Dr Brad Morantz

## Overview

- What is a phylogenetic tree
- Why do we do it
- How do we do it
- Methods and programs
- Parallels with Genetic Algorithms (time permitting)

## **Definition: Phylogenetic Tree**



Copyright by the Trustees of the Ansel Adams Publishing Rights Trust.

A tree (graphical representation) that shows evolutionary relationships based upon common ancestry. Describes the relationship between a set of objects (species or taxa). [Israngkul]

## **Phylogenetic Tree**

- Finding a tree like structure that defines certain ancestral relationships between a related set of objects. [Reijmers et al, 1999]
- Composed of branches/edges and nodes
- Can be gene families, single gene from many taxa, or combination of both. [Baldauf, 2003]

## Terminology

- Branches connections between nodes
- Evolutionary tree patterns of historical relationships between the data
- Leaves terminal node; taxa at the end of the tree
- Nodes represent the sequence for the given data; Internal nodes correspond to the hypothetical last common ancestor of everything arising from it. [Baldauf, 2003]
- Taxa (a car for hire) individual groups
- Tree (number after two) mathematical structure consisting of nodes which are connected by branches

### **Rooted vs Unrooted**

- Rooted tree
- Directed tree
  - Has a path
- Accepted common ancestor
- Doesn't blow over in the wind

- Unrooted Tree
- Typical results
- Unknown common
  - ancestor
- Common in Arizona,
   blowing around
   plains





## **Rooted Phylogenetic Tree**



## **Unrooted Phylogenetic Tree**



### **Combinatorial Explosion**

- Number of topologies =
  - Product i =3 to x (2i 5)
  - Ten objects yields 2,027,025 possible trees
  - 25 objects yields about 2.5 x 10<sup>28</sup> trees
- Branches
  - 2x -3 branches
    - X are peripheral
    - (X 3) are interior

## Why Do We Do It?

- Understand evolutionary history
  - Show visual representation of relationships and origins
  - Healthcare
    - Origins of diseases
    - Show how they are changing
    - Help produce cures and vaccines
- Model allows calculations to determine distances
  - Forensics
  - Our history

# **Our Family**



# **Terminal Node**



### **Evolution**

- Theory that groups of organisms change over time so that descendants differ structurally and/or functionally from their ancestors. [Pevsner, 2003]
- Biological process by which organisms inherit morphological and physiological features than define a species. [Pevsner, 2003]
- Biological theory that postulating that the various types of animals and plants have their origin in other preexisting types and that distinguishable differences are due to modifications in successive generations. [Encyclopaedia Britannica, 2004]

### Example



## Ways to do it

Parsimony

- Maximum Likelihood Estimator
- Distance based methods
- Clustering
- Genetic algorithm

\* While there are numerous methods, these are among the most popular





### Parsimony

#### Character based

- Search for tree with fewest number character changes that account for observed differences
- Best one has the least amount of evolutionary events required to obtain the specific tree

#### Advantages:

- Simple, intuitive, logical, and applicable to most models
- Can be used on a wide variety of data
- More powerful approach than distance to describe hierarchical relationship of genes & proteins (Pevsner, 2003)

#### Disadvantages;

- No mathematical origins
- Fooled by same multiple or circuitous changes

### **Parsimony Methods**

 The best tree is the one that minimizes the total number of mutations at all sites [Israngkul]

 The assumption of physical systematics is that genes exist in a nested hierarchy of relatedness and this is reflected in a hierarchical distribution of shared characters in the sequence. (Pevsner, 2003)

### **Maximum Likely Hood**



### **Maximum Likelihood Estimator**

- Tree with highest probability of evolving from given data
- Mathematical Process
  - Complex Math many have problems with this
- Advantages:
  - Can be used for various types of data including nucleotides and amino acids
  - Usually the most consistent
- Disadvantages:
  - Computationally intense
    - Can be fooled by multiple or circuitous changes

### **Distance Based Methods**

- Uses distances between leaves
  - Upper triangular matrix of distances between taxa
- Percent similarity
- Metric
  - Number of changes
    - Distance score
- Produces edge weighted tree
  - Least squares error
    - Can use Matlab

## Distances

- Hamming distance
  - n = # sites different
  - N = alignment length
  - D = 100% x (n/N)
  - ignore information of evolutionary relationship
- Jukes-Cantor
  - D = -3/4 ln (1-4P/3)
- Kimura
  - Transitions more likely than transversions
  - Transitions given more weight

## Distances

The walk from the parking lot

Now that's far!



### Least Squares

- Start with distance matrix
- Pick tree type to start
- Calculate distances to minimize SSE
- Try other trees
- Time consuming
- Exhaustive search will yield optimal tree, but also may take I-o-n-g time

## **Example of Distance Matrix**

|               | Human(A)    | Chimp(B)    | Gorilla(C)  | Orang-utan(D) | Gibbon(E) |
|---------------|-------------|-------------|-------------|---------------|-----------|
| Human(A)      | -           | .09190      | .1083       | .1790         | .2057     |
| Chimp(B)      | .0919/.0821 | -           | .1134       | .1940         | .2168     |
| Gorilla(C)    | .1057/.1083 | .1161/.1330 | -           | .1882         | .2170     |
| Orang-utan(D) | .1806/.1838 | .1910/.1838 | .1895/.1838 | -             | .2172     |
| Gibbon(E)     | .2067/.2142 | .2171/.2142 | .2156/.2142 | .2172/.2142   | -         |

## Clustering

- Genetic algorithm
- Neighbor joining
- UPGMA
- PAUP contains the last two

## Clustering

- Neighbor joining
  - Uses distances between pairs of taxa
    - i.e. Number of nucleotide differences
    - Not individual characters
  - Builds shortest tree by complex methods
- UPGMA
  - Unweighted Pair Group Method w/ Arithmetic Mean
  - Starts with first two most similar nodes
  - Compares this average/composite to the next
  - Never uses original nodes again

## Summary

Real life is usually not the optimum tree
The best model is one that is obtained by several methods

### Comments

Sometimes difficult because

- Do not have complete fossil record
- Parallel evolution
- Character reversals
- Circuitous changes
- Bifurcating vs polytomy split
- No animals, plants, or robots were hurt in the making of this presentation

### References

- Baldauf, S.: 2003, Phylogeny for the faint of heart: a tutorial, Trends in Genetics, 19(6) pp. 345-351
- Encyclopaedia Brittanica; 2004, The Internet http://www.brittannica.com
- Futuyma, D; 1998, Evolutionary Biology, Third Edition, Sinauer Associates, Sunderland MA
- Israngkul, W; 2002, Algorithms for Phylogenetic Tree Reconstruction, the Internet: biohpc.learn.in.th/files/contents2003/Worawit/ Algorithms
- Opperdoes, F., 1997 Construction of a Distance Tree Using Clustering with the UPGMA, the Internet : http://www.icp.ucl.ac.be/~opperd/private/upgma.html
- Pevsner, J.; 2003, Bioinformatics & Functional Genomics, Wiley, Hoboken NJ
- Reijmers, T., Wehrens, R., Daeyaert, F., Lewi, P., & Buydens, L.; 1999, Using genetic algorithms for the construction of phylogenetic trees: application to *G*-protein coupled receptor sequences, BioSystmes (49) pp. 31-43
- Renaut, R., 2004 Computational BioSciences Class, CBS-520, Arizona State University

## **Genetic Algorithms**

- Optimizing distance clustering (Reijmers et al)
- Optimal Distance method
  - Not guaranteed the most optimal, only near optimal
- Exhaustive exploration not guaranteed
- Same solution may be checked multiple times
- Simulated time evolution (Brad's project for winter break)