Neural Networks More than you ever wanted to know

Presented to the
Phoenix IEEE Computer Society 10 February 2016

Contents

- Overview \& focus
- Vector math
- Degrees of freedom
- Biological NN
- Central Nervous System (CNS)
- History
- The neuron
- Biological NN
- Interesting
- What is ANN
- Advantages
- Math
- Neurons
- Applications
- Information sources

Overview \& Focus

- I am a decision scientist
- Focus is on knowledge \& decision-making
- How various life forms make decisions
- Biologically inspired computing (BICA)
- In addition to mathematics
- Biological brains are neural networks
- So is central nervous system (CNS)
- Artificial Neural Networks (ANN)

Vector Math

Vectors A and C

Vector Math

Vectors A and C

This is very important in Electronics

Vector Math

Vector Math Explained

Degrees of Freedom

- The number of ways by which a dynamic system can change without violating any constraint imposed on it
- The number of values that are free to vary
- e.g. $3 X+2 Y=14$ (1 equation, 1 variable)
- There is one df (degree of freedom)
- If also had $2 X+4 Y=6$ (2 equations, 2 variables)
- Then no degrees of freedom
- X and Y are fixed
- If also had $5 \mathrm{X}+4 \mathrm{Y}=17$ (3 equations, 2 variables)
- Negative number df
- May not even be solvable

Amazing Animals

- Dolphins
- Koala bears
- Lions
- Dogs
- Bloodhounds
- Eagles
- Vision
- Homo sapiens
- Monkeys
- Lemurs
- Bats
- Echolocation
- Homing pigeons
- Location finding

What is the Organ of Vision?

- The brain!
- The ears, eyes, nose are all sensors
- Image/decision is made in the brain
- All connected by the central nervous system (CNS)
- There is also preprocessing in the retina

Beginning Research

- Hodgkin \& Huxley 1952
- Giant sea snail (aplysia calfornica)
- Giant squid axon
- Laws about movement of ions in nerve cells during action potential
- Before electron microscope
- Formulas for nerve cell membrane
- Before they could be seen

Neuron

Drawing

Mathematical view

It sums the weighted inputs

1940's

- McCullough \& Pitts
- Computational model
- Threshold logic
- 1943
- Donald Hebb
- Psychologist
- Hebbian learning
- Unsupervised
- Self learning

More History

- Rosenblatt
- Perceptron
- 1958
- Minsky \& Papert
- Can not do XOR
- Too computationally intensive
- Werbos
- Back Propagation
- 1975
- Electromechanical version

Renaissance

- Rumelhart \& McClelland
- Parallel Distributed Processing
- 1986
- PCs and more power in computers
- Other ways to set weights
- Lots of speed and computing power
- Artificial Neural Networks (ANN) come back

Summary of Biological NN

- Electro-chemical process
- Has effective clock speed of 1 Khz
- Stores knowledge in the connection weights
- We do NOT know how it sets the weights
- We do NOT understand creativity or intuition
- We do NOT understand ESP, psycho-kinesis
- It does have massive parallel operation
- We do NOT understand timing along axons

Interesting Tidbits

- A baby, until age 2, develops 1 million interconnects per second
- Average human has between 4E10 to 1E11 neurons
- Each neuron can have 1E4 interconnects
- Some claim 1E5 (do the math)

What is an ANN

- General function approximator
- Imitates performance of original
- Does not duplicate model
- Does provide near or approximate results
- It maps input to output
- Contains knowledge
- Data driven
- Does not understand causal model
- Learns input to output relationship
- Learns from supplied training data

What Can an ANN Use to Make Connections/Mapping?

- Learned Information
- From experience
- From historical data
- By example
- By organization
- From data

Four types of Functions

- Prediction and Time Series Forecasting
- Like regression, but not constrained to linear
- Classification
- Sort into a class, like cluster analysis
- Pattern Recognition
- Fined tuned classification
- Self organizing map for clustering
- Not constrained to linear or Gauss Normal distribution
- Also used for modeling biological neural network in medical research

Advantages of Neural Network

- No Expert needed
- No Knowledge Engineer needed
- Does not have bias of expert
- Can interpolate for all cases
- Learns from facts
- Can resolve conflicts
- Variables can be correlated (multicollinearity)
- Does not need linear or Gauss Normal

More Advantages

- Learns relationships
- Can make good model with noisy or incomplete data
- Can handle non-linear or discontinuous data
- Can Handle data of unknown or undefined distribution
- Data Driven

Disadvantages

- Black Box
- don't know why or how
- not sure of what it is looking at
- Operator dependent
- Don't have knowledge in hand
- * Many of these disadvantages are being overcome

Black Box

\geqslant What happens inside the box is unknown $*$ We can't see into the box \diamond We don't know what it knows

Regression

Linear Regression

$Y=a X+b Y+c$ is equation of the line
The dots are the real data points

Suppose

You had a whole lot more equations \& coefficients You were not limited to linear math (activation functions)
But there is a loss of degrees of freedom
Can have multiple hidden layers ("Deep learning")

Small Neural Network

See how many equations there are describing the system

Mathematical Equations

- Input to Hidden ${ }_{12}=\mathrm{H}_{1}$
- $\mathrm{H}_{1}=\left[\left(\mathrm{I}_{1}{ }^{*} \mathrm{~F}_{11}\right) * \mathrm{~W}_{111}\right]+\left[\left(\mathrm{I}_{2}{ }^{*} \mathrm{~F}_{21}\right) * \mathrm{~W}_{211}\right]+\left[\left(\mathrm{I}_{3}{ }^{*} \mathrm{~F}_{31}\right) * \mathrm{~W}_{311}\right]$
- $\mathrm{H}_{2}=\ldots$.
- $\mathrm{H}_{3}=\ldots$. .
- Out $_{1}=\left[\left(\mathrm{H}_{1}{ }^{*} \mathrm{~F}_{12}\right) * \mathrm{~W}_{121}\right]+\left[\left(\mathrm{H}_{2}{ }^{*} \mathrm{~F}_{22}\right) * \mathrm{~W}_{221}\right]+\left[\left(\mathrm{H}_{3}{ }^{*} \mathrm{~F}_{32}\right)^{*} \mathrm{~W}_{321}\right]$

With a few more neurons, it becomes many more equations Think about another hidden layer

Linear Algebra to the Rescue

- For each layer
- A matrix of the weights
- A matrix of the inputs
- An Activation function called 'Active'
- output = Active(matmul(input, weights))*
- Where Active is the activation function
$*$ This is in Fortran 90 (and up)
Can also do this in Octave or Matlab

What The Neuron Does

- It sums the weighted inputs
- If it is enough, then neuron fires
- There can be as many as 10,000 or more inputs

Neuron Activation

\diamond Weights can be positive or negative \star Negative weight inhibits neuron firing
\diamond Sum $=\mathrm{W}_{1} \mathrm{~N}_{1}+\mathrm{W}_{2} \mathrm{~N}_{2}+\ldots .+\mathrm{W}_{\mathrm{n}} \mathrm{N}_{\mathrm{n}}$
$>$ If sum is negative, neuron does not fire
\diamond If sum is positive (over threshold) neuron fires
\otimes Fire means an output from neuron
*Non-linear function
\diamond Some models include a threshold

Activation Functions

- Linear
- Sigmoidal
- $1.0 /\left(1.0+e^{-s}\right)$ where $s=\Sigma$ inputs
- 0 or +1 result
- Hyperbolic Tangent
$-\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$ where $s=\Sigma$ inputs
- -1 or +1 result
- Also called squashing or clamping function
- Because it takes a large value and compresses it

Neuron Math

- For other than Linear
- Don't try for 0 or 1
- Use 0.1 and 0.9 instead for logistic
- Use -0.9 and +0.9 for hyperbolic tangent
- Squares up the corners
- Real plane math
- Complex domain math
- Quite often outperforms systems using real domain math
- Better for signal \& image processing
- Need to scale values

Sum Total

- Huge equation
- Tons of coefficients
- Non-linear activation functions
- Allows it to fit the data
- Never understands what is going on
- Just fits the data
- Contains knowledge

Training

- Like going to school \& learning
- Setting the connection weights
- To create optimal performance
- Optimal adherence to training data
- Really an optimization problem
- Optimal methods depends on many variables
- See optimization lecture
- Need objective function
- Beware of local minima!

Supervised or Unsupervised

- Supervised
- Train it with examples
- And give it the answers
- Much like school
- Unsupervised
- Give it examples
- Do NOT give it answers
- It organizes the data by similarities
- Self discovery

Training Methods

- Back Propagation (most popular)
- Gradient Descent
- Generalized reduced gradient (GRG)
- Simulated Annealing
- Genetic Algorithm
- Two or more output nodes
- Multi objective optimization
- Many more methods
- Bio NN does it more efficiently, but we do not know how it does it

Training Data Set

- Need more observations than weights
- Positive number degrees freedom
- If not, use boosting* or bagging**
- More observations is usually better
- Lower variance
- More knowledge (the real key)
- Watch aging of data
- Data must be representative of population
* Singer, Schapire, \& Freund
** Breiman

My Contribution

- Recency weighted ANN
- Time is a variable
- Life \& things change over time
- Things in near future are more like what happened in near past
- It trains on all data but near past is more important, and at some point stops using old data
- This reduced residual $>50 \%$ on some data sets

Recency Weighting Continued

- Did a two factor (blocked) ANOVA
- Compared Regression to ANN
- Recency weighting helped the ANN, not regression
- The ANN stores knowledge
- Regression builds a model

Dynamic Learning

*Continuous learning

- From mistakes and successes
- From new information
$\stackrel{\text { Shooting baskets example }}{ }$
- Too low. Learned: throw harder
- Too high. Learned: throw softer, but not as soft as before
- Basket! Learned: correct amount of "push"
\&Loaning \$10 example

Hybrids

-Combine several systems

- GA and ANN
- ANN with fuzzy, GA, \& database
- Many possibilities
*Uses more methods than just one type
*Can seed system with expert knowledge and then update with data
\diamond Sometimes hard to get all parts to work together
Harder to validate model

Biological Example

- You go some place that you have never been before, and get "bad vibes"
- Atmosphere, temperature, lighting, smell, coloring, numerous things
- For some reason, brain associates these together, possibly some past experience
- Gives you "bad feeling"
- Intuition?

Computer Examples

- Military: submarine, tank, \& sniper detection
- Security
- Classify stars \& planets
- Data mining
- Natural language recognition
- OCR including Kanji
- A classifier in an ensemble learner

ABL Fire Control Example

- ANN with GA hybrid
- With real constraints
- Initially trained from panel of experts
- Ran in simulation
- Learned from mistakes
- Retrained after each set of sorties
- Improved performance (less leakers)
- From Stroud, IEEE Transactions on Neural Networks

Vehicle Classification Example

Creating an Optimal Protein

- Causal model is not understood
- Solution: use an artificial neural network (ANN) with a genetic algorithm (GA)
- Train ANN on known proteins
- Use trained ANN as fitness function in GA
- Use GA for exploited search for near optimal protein
- Could use this same methodology for designing a missile, a flying saucer, etc

ANN vs Regression

- Look at the data
- Is data linear over range of interest?
- Is Regression accurate enough?
- Occam's razor says to use it
- Is data non-linear and/or discontinuous?
- Then use an ANN

Information Sources

-www.machine-cognition.com

- IEEE Transactions on Neural Networks
- IEEE Intelligent Systems Journal
- IEEE Computational Intelligence Society
- AAAI American Association for Artificial Intelligence
- www.ieee.org
- Many good books
- Internet

Thank You

Any Questions?

