Neural Networks A Statistical View

Brad Morantz PhD

The Future

OK, so Descartes beat me to it, but this is in a different realm

Classification Problem

- Our sensors report:
 - Velocity fuzzy: low, medium, or high
 - Sky or ground categorical variable
 - Length ratio variable
 - Width ratio variable
 - height ratio variable

How Do We Classify These?

Creating an Optimal Protein

- Causal model is not understood
- Solution: use an artificial neural network (ANN) with a genetic algorithm (GA)
 - Train ANN on known proteins
 - Use trained ANN as fitness function in GA
 - Use GA for exploited search for near optimal protein

Other Applications

- Image processing
 - Pixel: foreground or background classification
 - Non-linear filtering
 - Classification
 - Pattern recognition
- Radar
 - Tracker
 - Pattern recognition
- Medical
 - Diagnosis
 - Classification
 - Pattern recognition

More Applications

- Economic
 - Credit vetting
 - Forecasting
 - Fraud detection
- Military
 - Automatic target recognition
 - Steganography
 - Image processing
- The list goes on

Contents

- Introduction
- Sample applications
- Neural network
- Type of functions
- Advantages
- Disadvantages
- Biological NN
- How an NN works
- The neuron
- Mathematics

- Compare to regression
- 2. Architecture
- 3. Training
- 4. Dynamic learning & hybrids
- 5. Examples
- 6. When to use
- 7. Future
- 8. Information sources

What is a Neural Network?

- A human Brain
- A porpoise brain
- The brain in a living creature
- A computer program
 - Emulates biological brain
 - Limited connections
- Specialized computer chip

What is an ANN?

(Artificial Neural Network)

- General function approximator
 - Imitates performance of original
 - Does not duplicate model
 - Does provide near or approximate results
 - It maps input to output
- Data driven
 - Does not understand causal model
 - Learns input to output relationship
 - Learns from supplied training data

Models

Model based

Inputs

Model Formulae Functions

Outputs

Artificial Neural Network

Inputs

Relationship Map

Outputs

What Can an ANN Use to Make Connections/Mapping?

- Learned Information
- From experience
- From historical data
- By example
- By organization

Four types of Functions

- Prediction and Time Series Forecasting
 - → Like regression, but not constrained to linear
- Classification
 - > Find which class is the closest match
- Pattern Recognition
 - → Fined tuned classification
- Self organizing map for clustering
- Not constrained to linear or Gauss Normal distribution
- Also used for modeling biological neural network in medical research

Advantages of Neural Network

- No Expert needed
- No Knowledge Engineer needed
- Does not have bias of expert
- Can interpolate for all cases
- Learns from facts
- Can resolve conflicts
- Variables can be correlated (multicollinearity)

More Advantages

- Learns relationships
- Can make good model with noisy or incomplete data
- Can handle non-linear or discontinuous data
- Can Handle data of unknown or undefined distribution
- Data Driven

Disadvantages of Neural Net

- Black Box
 - don't know why or how
 - not sure of what it is looking at
- Operator dependent
- Don't have knowledge in hand
- Just a mapping of input to output, no modeling of system
- * Many of these disadvantages are being overcome

Black Box

- What happens inside the box is unknown
- We can't see into the box
- We don't know what it knows

Biological Neural Network

- ◆ Human Brain has 4 x 10¹⁰ to 10¹¹ Neurons
- Each can have 10,000 connections*
- Human baby makes 1 million connections per second until age 2
- Speed of synapse is 1 kHz, much slower than computer (3.0+ gHz)
- Massively parallel structure
 - * Some estimates are much greater, as much as 100,000

How does a neuron work?

- It sums the weighted inputs
 - If it is enough, then neuron fires
 - There can be as many as 10,000 or more inputs

Neuron

soma (body)

Dendrites (inputs)

Axons (outputs)

Neural Network

This is a feed-forward design

Computer Neural Network

- Von Neumann architecture
- Serial machine with inherently parallel process
- Series of mathematical equations
- Simulates relatively small brain
- Limited connectivity
- Closely approximates complex nonlinear functions

Neuron Activation

- Weights can be positive or negative
- Negative weight inhibits neuron firing
- $Sum = W_1N_1 + W_2N_2 + + W_nN_n$
- If sum is negative, neuron does not fire
- If sum is positive neuron fires
- Fire means an output from neuron
- Non-linear function
- Some models include a threshold

Neuron Activation

- Linear
- Sigmoidal
 - $1.0/(1.0+e^{-s})$ where $s = \Sigma$ inputs
 - 0 or +1 result
- Hyperbolic Tangent
 - $(e^s e^{-s}) / (e^s + e^{-s})$ where $s = \Sigma$ inputs
 - -1 or +1 result
- Also called squashing or clamping function
 - Because it takes a large value and compresses it
 - Adds the non-linearity to the process

Activation Functions

Sigmoidal Function Goes from 0 to 1 Hard to be at extreme

Hyperbolic Tangent Goes from -1 to 1 Hard to be at extreme

Neuron Math

- Don't try for 0 or 1
 - Use 0.1 and 0.9 instead for logistic
 - Use -0.9 and +0.9 for hyperbolic tangent
- Real plane math
- Complex domain math
 - Quite often outperforms systems using real domain math
 - Better for signal & image processing

What does the network look like?

- This is a computer model, not biological
- Left has 11 neurons, sea slug has 100

Recurrent or Feedback

Small Neural Network

Regression?

- With linear activation, this is but parallel regression
- With sigmoid or H-Tan, this is a parallel logistic regression
- An ANN with zero hidden nodes, one output, and linear activation is regression if the objective function is minimizing SSE (sum of squared error)

Mathematical Equations

- ♦ Input to Hidden₁₂=H₁
- $H_1 = [(I_1 * F_{11}) * W_{111}] + [(I_2 * F_{21}) * W_{211}] + [(I_3 * F_{31}) * W_{311}]$
- $H_2 = \dots$
- \bullet H₃ =
- \bullet Out₁=[(H₁*F₁₂)*W₁₂₁] + [(H₂*F₂₂)*W₂₂₁] + [(H₃*F₃₂)*W₃₂₁]

Matrix Math

Makes it very simple!

 $F(A \times W) = Out$

In Fortran:

out = Active(matmul(input, weights))

Where F or Active is the activation function

Can also use Matlab/Mathematica but it will compute more slowly as they are interpretive

Comparison to Regression

- OLS with 3 independent and 1 dependent variables would have a maximum of 3 coefficients and 1 intercept
- With 2 dependent variables, it would require Canonical Correlation (general linear model) and the same number of coefficients
- ANN (with one hidden layer) has 15 coefficients (weights) and activation functions can be non-linear
- Multicollinearity is not a problem in an ANN

Inputs

- One per input node
- Ratio
- Logical
- Dummy
- Categorical
- Ordinal
- Fuzzy (PNL)
- Functional Link Network
 - Interaction variable
 - Transformed variable

Hidden Layer(s)

- Increase complexity
- Can increase accuracy
- Can reduce degrees of freedom
 - Need larger data set
- Presently architecture up to programmer
- Source for error
- In future will be more automatic
 - Some literature describes this

Hidden Layer(s)

Outputs

- One for single dependent variable
- Multiple
 - Prediction
 - Classification
 - Pattern recognition

Outputs

Macro View of Training

- Setting all of the weights
- To create optimal performance
- Optimal adherence to training data
- Really an optimization problem
 - Optimal methods depends on many variables
 - See optimization lecture
- Need objective function
- Beware of local minima!

Supervised or Not

- Supervised
 - Train it with examples
 - And give it the answers
 - Much like school
- Unsupervised
 - Give it examples
 - Do NOT give it answers
 - It organizes the data by similarities

Training

- Supervised
 Pattern 1 → Answer 1
 Pattern 2 → Answer 2
 Pattern 3 → Answer 3
- UnsupervisedPattern 1Pattern 2Pattern 3

Optimization Methods to Set the Weights

- Back Propagation (most popular)
- Gradient Descent
- Generalized reduced gradient (GRG)
- Simulated Annealing
- Genetic Algorithm
- Two or more output nodes
 - Multi objective optimization (hard problem)
- Many more methods

Training Data Set

- Need more observations than weights
 - Positive number degrees freedom
- More observations is usually better
 - Lower variance
 - More knowledge
- Watch aging of data
- Data must be representative of population

Data Window

- Rolling Window
 - Rolls forward including all data behind
 - Constant starting point with ever increasing size
- Moving Window
 - Deletes the oldest as it adds the newest
 - Constant size with ever increasing starting point
 - Necessary when underlying factors change

Rolling vs. Moving Window Rolling Window Moving Window

Data Window Continued

- Weighted Window
 - Morantz, Whalen, & Zhang
 - Superset of rolling & moving window
 - Oldest data is reduced in importance
 - Has reduced residual by as much as 50%
 - Multi factor ANOVA shows results significant in majority of applications with real world data

Dynamic Learning

- Also called reinforcement learning
- Continuous learning
 - From mistakes and successes
 - From new information
- Shooting baskets example
 - Too low. Learned: throw harder
 - Too high. Learned: throw softer, but not as soft as before
 - Basket! Learned: correct amount of "push"
- Loaning \$10 example

Hybrids

- Combine several systems
 - GA and ANN
 - ANN with fuzzy, GA, & database
 - Many possibilities
- Uses more methods than just one type
- Can seed system with expert knowledge and then update with data
- Sometimes hard to get all parts to work together
- Harder to validate model

Example

- You go some place that you have never been before, and get "bad vibes"
 - Atmosphere, temperature, lighting, smell, coloring, numerous things
- For some reason, brain associates these together, possibly some past experience
- Gives you "bad feeling"

Additional Examples

- Military: submarine, tank, & sniper detection
- Security
- Classify stars & planets
- Data mining
- Natural language recognition
- OCR including Kanji

My Favorite Examples

- Fire control for ABL (air borne Laser)
- ANN with GA hybrid
- With real constraints
- Initially trained from panel of experts
- Ran in simulation
 - Learned from mistakes
 - Retrained after each set of sorties
 - Improved performance (less leakers)
 - From Stroud, IEEE Transactions on Neural Networks

The Other Favorite Example

- The brain of a bat
 - Size of a plum
 - Controls voluntary & involuntary processes
 - Controls sonar system and navigation
 - Outperforms our best navigation systems
 - Bat can fly through moving electric fan

When to Use?

- Look at the data
- Is data linear over range of interest?
- Is Regression accurate enough?
 - Occam's razor says to use it if it is
- Is data non-linear and/or discontinuous?

What to Use

Regression is fine

Use the ANN here Regression won't Fit it well

ANN Chip

- Original funding was from TEAMA
 - Goal was for use as intelligent appliance
 - Toaster learned how you like your toast
 - Coffee pot learned how you want coffee
- JPL
 - Stack chip
 - For vision applications

Future

- Rule extraction
- Hybrids
- Dynamic learning
- Parallel processing (it is here)
- Dedicated chips (ZISC chip)
- Bigger & more automatic
- Machine Cognition

About Me

- I am a Decision Scientist
- I work on methods to make intelligent High Quality decisions
- Neural networks are a tool in my tool-box
- I use them like regression, except that they can be non-linear
- Not the case of only having a hammer and all problems looking like a nail.

Information Sources

- www.machine-cognition.com
- ◆IEEE Transactions on Neural Networks
- ◆IEEE Intelligent Systems Journal
- **◆**IEEE Computational Intelligence Society
- AAAI American Association for Artificial Intelligence
- www.ieee.org
- Internet

Contact Info

- www.machine-cognition.com
- bradscientist@ieee.org