
An Introduction to Artificial Intelligence

By Dr Brad Morantz Viral Immunology Center Georgia State University

Star WarsTM

If I had any REAL brains would I be doing this?

I hope that I don't short out any of his circuits.

What is Intelligence?

- Who knows what it is
- Ability to understand or reason (dictionary)
- Mental ability: learning, problem solving, abstract thinking, & reasoning (encyclopaedia)
- Herb Simon
 - Involves associations, pattern recognition, inference, experience, & intuition
- 1948 Conference

What does "Artificial" mean?

- Random House College Dictionary:
 - Produced by man
 - Made in imitation or as a substitute
 - Simulated
- Examples
 - Artificial Chocolate
 - May look and taste like chocolate, but it's not
 - Hot dogs
 - Soy dogs look like hot dogs, kind of taste like them, are definitely healthier, but contain no meat.

Then what is Artificial Intelligence?

- Combining the terms
 - Simulated ability to understand, reason, and problem solve,
 - or at least appear to
- Ability of a computer to perform tasks (that human intelligence is capable of doing) such as reasoning and learning. (McGraw-Hill computer Handbook)

What are we Trying to Accomplish?

- Solve problems
- Improve performance
- Increase profits
- Forecasting
- Better decisions
 - DSS Decision Support Systems
- Model biological to further understanding

Example applications

- Mycin
 - Expert system that helps doctors to diagnose infectious blood diseases
- Teresius
 - Expert system to help with investments
- Microsoft Office™
 - Uses AI to help correct mistakes
 - To do what it thinks is best
- My work in forecasting CD rates
 - Neural network time series forecasting

Current AI Methods

- Expert Systems
- Case Based Reasoning
- Neural Networks
- Genetic Algorithms
- Fuzzy logic
- Data Mining
- Hybrid
- Synthetic Immune Systems

Expert Systems

- Just like having a subject expert
- The same as a Decision Tree
- Stored in a set of "If.. then.." rules
- Consists of
 - Rule base
 - Inference engine/rule interpreter
- Get rules from Human Expert
- Knowledge engineer converts knowledge into rules
- Example
 - If this is a corner, then must go into second gear

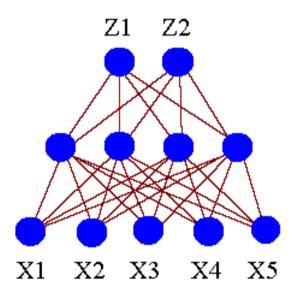
Using an Expert System

- Steps
 - Hire an expert
 - Hire a knowledge engineer
 - Create rule set
 - Apply problem
- Limitations
 - Can only answer problems that it has already seen
 - Contains biases of expert
 - Where is the intelligence?

Case Based Reasoning

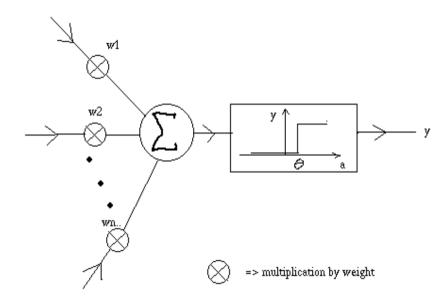
- Very similar to our legal system
- Store a large selection of cases
- Lookup engine
- Find case like problem at hand
- Example
 - The last time the car would not go it was a plugged fuel filter

Applying CBR


- Must have library of cases
- Inference engine is hard to create, looking for similarities between problem and database of cases
- Cannot solve anything that was not in the original database
- Where is the intelligence?

Neural Networks

- What is a neural network?
- Biological
- Computer emulation (ANN)
- Massively parallel system
- General data driven function approximator
- Functions performed
 - Pattern recognition
 - Classification
 - Forecasting/nonlinear regression
 - Brain emulation


Feed Forward Neural Network

Output

input

Model of Individual Neuron

Input is a large number of weighted outputs from nerves or other neurons It sums the weighted inputs

If the sum is greater than a threshold, then it fires

Using Neural Networks

- Steps
 - Get training data set
 - Optional clean the data
 - Set ANN architecture
 - Train the system
- Weaknesses
 - Operator designs architecture and sets training
 - Very operator dependent
- Where is the intelligence?

Genetic Algorithms (GA)

- John Holland and Schema Theorem, 1975
- Imitates natural evolution
 - Also called evolutionary computing
 - Modeled on natural selection
 - Survival of the fittest
- Exploited search in hyperspace (N space)
- Near optimal solution for complex problems

How GA's Work

- Start with initial population of chromosomes
 - Each one represents a possible solution
 - Chromosome is a string of binary values
- Mate with each other to produce new chromosomes, mutation included
- Test all chromosomes
- Rate them (figure of merit)
- Kill off worst solutions
- Mate again and start all over
- Stop by 3 criteria
 - No more improvement
 - Number of generations
 - Achieved desired level of performance

Using a Genetic Algorithm

- Must make fitness function
 - Dependent on criteria being searched
 - Rates fitness of each chromosome
- Give it initial population
- Watch out for local maxima/minima
- Can be used to find best or worst
 - Depends on fitness function
- Large overhead
- Where is the intelligence?

Fuzzy Logic

- Lotfi Zadeh, 1968
- Originally developed for "specificity" to help communicate
- To convert lingual variables into computer inputs
 - Hot, cold, high, medium, low, too much, etc
- Is there any intelligence here?
- Now Fuzzy Logic Type II Jerry Mendel
- Precisiated Natural Language

Data Mining

- Tons of data available today
- Look into the data
 - No preconceived ideas
 - Look and see what you find
 - Look for patterns
- Today, people search data for specific things
- Heavily operator dependent
- Try statistics first, then SVM or PSVM. Also cluster analysis, neural networks, other search methods
 - SVM is Support Vector Machine
 - PSVM is polynomial SVM
 - Methods to group observations upon dimensions
- Where is the intelligence?

Synthetic Immune Systems

- Mimics human autoimmune system
- Good for computer security
 - Detects intrusions
- Somewhat a reverse cluster analysis
 - Detects if not in acceptable cluster
- Uses statistics, clustering, pattern recognition, etc
- Where is the intelligence?

- Combinations of the methods
- My work
 - Neural network
 - Linked list database
 - Fuzzy logic on some inputs
 - Genetic algorithms to set architecture & weights
- Biological intelligence is truly a combination of methods

Future

- Systems that
 - set themselves up
 - learn from successes and mistakes
 - learn from the environment
 - Behave like biological intelligence
- Autonomous learning
- Driving factors:
 - Security
 - Anti terrorism
 - "Big Brother"
 - Business
 - Every facet including marketing

Some Applications

- Computer Security
 - Who to let in
 - Acceptable activity
 - Virus detection
- Detection
 - Sniper in tree
 - Submarine in under water
- Classification
 - Credit approval
 - Credit card transaction approval

More Applications

- Pattern recognition
 - Guidance system
 - Iris Scans
 - Retina scans
 - Finger prints
 - Criminal activity
 - Purchasing patterns
 - Voice recognition
 - Character recognition
- Forecasting
 - Stock prices or other financial data
 - Tracker for radar/sonar
 - Non-linear regression

Even More Applications

- Optimization
 - Traveling salesman problem
 - Complex scheduling problem
 - Setting weights and architecture of ANN
- Bio-medical
 - Seizure prediction
 - Model brain
 - Condition recognition
 - Diagnosis support

References

- The IEEE www.ieee.org
- www.machine-cogntion.com
- American Association for Artificial Intelligence www.aaai.org
- IEEE Intelligent Systems Journal
- Artificial Intelligence: A Modern Approach, Russell
 & Norvig
- Human Problem Solving, Newell & Simon
- IEEE Computational Intelligence Society:
- •www.ieee-cis.org

Contact Info

- www.machine-cognition.com
- bradscientist@ieee.org